Bài 33 trang 77 SGK Toán 8 tập 2


Đề bài

Chứng minh rằng nếu tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k\), thì tỉ số của hai đường trung tuyến tương ứng với hai tam giác đó cũng bằng \(k\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng:

- Định lí: Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp đó bằng nhau, thì hai tam giác đồng dạng.

- Tính chất hai tam giác đồng dạng.

- Tính chất trung tuyến.

Lời giải chi tiết

Giả sử \(∆A'B'C'\) đồng dạng \(∆ABC\) theo tỉ số \(k, A'M', AM\) là hai đường trung tuyến tương ứng.

Vì \(∆A'B'C'\) đồng dạng \(∆ABC\) theo tỉ số k (giả thiết)

\(\dfrac{A'B'}{AB} = \dfrac{B'C'}{BC} = k\) (tính chất hai tam giác đồng dạng)

Mà \(B'C' = 2B'M', BC = 2BM\) (tính chất trung tuyến)

\( \Rightarrow \dfrac{{A'B'}}{{AB}} = \dfrac{{2B'M'}}{{2BM}} = \dfrac{{B'M'}}{{BM}}\)

Xét  \(∆ABM\) và \( ∆A'B'M'\) có:

 \(\widehat{B} = \widehat{B'}\) (vì \(∆A'B'C'\) đồng dạng \(∆ABC\)) 

 \( \dfrac{{A'B'}}{{AB}} = \dfrac{{B'M'}}{{BM}}\) (chứng minh trên)

\( \Rightarrow ∆A'B'M' \) đồng dạng \(∆ABM\) theo tỉ số \(\frac{A'B'}{AB} = k\) (c-g-c)

\( \Rightarrow \dfrac{A'M'}{AM}= \dfrac{A'B'}{AB} = k.\)

Loigiaihay.com


Bình chọn:
4.3 trên 202 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.