Bài 26 trang 16 SGK Toán 9 tập 1


Giải bài 26 trang 16 SGK Toán 9 tập 1. So sánh

Đề bài

a) So sánh \( \sqrt{25 + 9}\) và \( \sqrt{25} + \sqrt{9}\);

b) Với \(a > 0\) và \(b > 0\), chứng minh \( \sqrt{a + b} < \sqrt{a}+\sqrt{b}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng định lí so sánh hai căn bậc hai:

\(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\),   với \(a,\ b \ge 0\).

+) Sử dụng các công thức: với \(a ,\ b \ge 0\) , ta có:

 \((\sqrt{a})^2=a\). 

 \(\sqrt{a}.\sqrt{b}=\sqrt{ab}\).

Lời giải chi tiết

a) Ta có: 

\(+)  \sqrt{25 + 9}=\sqrt{34}\).

\(+)  \sqrt{25} + \sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3\)

\(=8=\sqrt{8^2}=\sqrt{64}\).

Vì \(34<64\) nên \(\sqrt{34}<\sqrt{64}\)

Vậy \(\sqrt{25 + 9}<\sqrt{25} + \sqrt{9}\)

b) Với \(a>0,b>0\), ta có

\(+)\, (\sqrt{a + b})^{2} = a + b\).

\(+) \,(\sqrt{a} + \sqrt{b})^{2}= (\sqrt{a})^2+ 2\sqrt a .\sqrt b +(\sqrt{b})^2\)

 \( = a +2\sqrt{ab}  + b\)

 \(=(a+b) +2\sqrt{ab}\). 

Vì \(a > 0,\ b > 0\) nên \(\sqrt{ab} > 0 \Leftrightarrow 2\sqrt{ab} >0\)

\(\Leftrightarrow (a+b) +2\sqrt{ab} > a+b\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{ b})^2 > (\sqrt{a+b})^2\)

\(\Leftrightarrow \sqrt{a}+\sqrt{b}>\sqrt{a+b}\) (đpcm)

 Loigiaihay.com


Bình chọn:
4.6 trên 98 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài