Bài 18 trang 14 SGK Toán 9 tập 1

Bình chọn:
4.7 trên 43 phiếu

Giải bài 18 trang 14 SGK Toán 9 tập 1. Áp dụng quy tắc nhân các căn bậc hai, hãy tính.

Đề bài

Áp dụng quy tắc nhân các căn bậc hai, hãy tính:

a) \(\sqrt{7}.\sqrt{63}\);                    b) \(\sqrt{2,5}.\sqrt{30}.\sqrt{48}\);

c) \(\sqrt{0,4}.\sqrt{6,4}\);              d) \(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

+) \(\sqrt{a}.\sqrt{b}=\sqrt{a.b}\), với \(a ,\ b \ge 0\).

+) Với mọi số \(a \ge 0\), luôn có \(\sqrt{a^2}=a\).

+) Với mọi \(a ,\ b ,\ c\)  ta có:  \(a.b.c=(a.b).c=a.(b.c)=b.(a.c) \).

Lời giải chi tiết

a) Ta có:

\(\sqrt{7}.\sqrt{63}=\sqrt{7.63}\) \(=\sqrt{7.(7.9)}\) \(=\sqrt{(7.7).9}\)

                \(=\sqrt{7^2. 3^2}\) \(=\sqrt{7^2}.\sqrt{3^2}\)

                \(=|7|.|3|=7.3\) \(=21\).

b) Ta có:

\(\sqrt{2,5}.\sqrt{30}.\sqrt{48}=\sqrt{2,5.30.48}\)

                             \(=\sqrt{2,5.(10.3).(16.3)}\)

                             \(=\sqrt{(2,5.10).(3.3).16}\)

                             \(=\sqrt{25.3^2.4^2}\)

                             \(=\sqrt{25}.\sqrt{3^2}.\sqrt{4^2}\)

                             \(=\sqrt{5^2}.\sqrt{3^2}.\sqrt{4^2}\)

                             \(=|5|.|3|.|4|=5.3.4\) \(=60\).

c) Ta có:

\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{0,4.(0,1.64)}\)

                        \(=\sqrt{(0,4.0,1).64}=\sqrt{0,04.64}\)

                        \(=\sqrt{0,04}.\sqrt{64}=\sqrt{0,2^2}.\sqrt{8^2}\)

                        \(=|0,2|.|8|=0,2.8\) \(=1,6\).

d)

\(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{2,7.5.1,5}\)

                              \(=\sqrt{(27.0,1).5.(0,5.3)}\)

                              \(=\sqrt{(27.3).(0,1.5).0,5}\)

                              \(=\sqrt{81.0,5.0,5} =\sqrt{81.0,5^2}\)

                              \(=\sqrt{81}.\sqrt{0,5^2}=\sqrt{9^2}.\sqrt{0,5^2}\)

                              \(=|9|.|0,5|=9.0,5=4,5\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan