Bài 20 trang 15 SGK Toán 9 tập 1

Bình chọn:
4.7 trên 67 phiếu

Giải bài 20 trang 15 SGK Toán 9 tập 1. Rút gọn các biểu thức sau:

Đề bài

 Rút gọn các biểu thức sau:

a) \( \sqrt{\dfrac{2a}{3}}\).\( \sqrt{\dfrac{3a}{8}}\) với \(a ≥ 0\);

b) \( \sqrt{13a}.\sqrt{\dfrac{52}{a}}\) với \(a > 0\);

c) \( \sqrt{5a}.\sqrt{45a} - 3a\) với \(a ≥ 0\);

d) \( (3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức sau:

+) \(\sqrt{a}.\sqrt{b}=\sqrt{a.b}\),   với \(a ,\ b \ge 0\).

+) Với mọi số \(a \ge 0\), luôn có \(\sqrt{a^2}=a\).

+) \((a-b)^2=a^2-2ab+b^2.\)

Lời giải chi tiết

a) Ta có:

  \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{2a}{3}.\dfrac{3a}{8}}=\sqrt{\dfrac{2a.3a}{3.8}}\)

                           \(=\sqrt{\dfrac{(2.3).(a.a)}{3.8}}=\sqrt{\dfrac{6a^2}{24}}\)

                           \(=\sqrt{\dfrac{6a^2}{6.4}}=\sqrt{\dfrac{a^2}{4}}=\sqrt{\dfrac{a^2}{2^2}}\)

                           \(=\sqrt{\left(\dfrac{a}{2}\right)^2}=\left| \dfrac{a}{2}\right|\) \(= \dfrac{a}{2}\).

Vì \(a \ge 0\)   nên   \(\dfrac{a}{2} \ge 0 \)  \( \Rightarrow \left| \dfrac{a}{2} \right| = \dfrac{a}{2}\).

b) Ta có:

\(\sqrt{13a}.\sqrt{\dfrac{52}{a}}=\sqrt{13a.\dfrac{52}{a}}=\sqrt{\dfrac{13a.52}{a}}\)

                        \(=\sqrt{\dfrac{13a.(13.4)}{a}}=\sqrt{\dfrac{(13.13).4.a}{a}}\)

                        \(=\sqrt{13^2.4}=\sqrt{13^2}.\sqrt{4}\)

                        \(=\sqrt{13^2}.\sqrt{2^2}=13.2\)

                        \(=26\)    (vì \(a>0\))

c)

Do \(a\geq 0\) nên bài toán luôn được xác định có nghĩa.

Ta có: \(\sqrt{5a}.\sqrt{45a}- 3a=\sqrt{5a.45a}-3a\)

                                        \(=\sqrt{(5.a).(5.9.a)}-3a\)

                                        \(=\sqrt{(5.5).9.(a.a)}-3a\)

                                        \(=\sqrt{5^2.3^2.a^2}-3a\)

                                        \(=\sqrt{5^2}.\sqrt{3^2}.\sqrt{a^2}-3a\)

                                        \(=5.3.\left|a\right|-3a=15 \left|a \right| -3a.\)

                                        \(=15a - 3a = (15-3)a =12a.\)

Vì \(a \ge 0\)   nên  \(\left| a \right| = a.\)

d) Ta có:

\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=\sqrt{0,2.180a^2}\)

                                             \(= (3-a)^2-\sqrt{0,2.(10.18).a^2}\)

                                             \(=(3-a)^2-\sqrt{(0,2.10).18.a^2}\)

                                             \(=(3-a)^3-\sqrt{2.18.a^2}\)

                                             \(=(3-a)^2-\sqrt{36a^2}\)

                                             \(=(3-a)^2-\sqrt{36}.\sqrt{a^2}\)

                                             \(=(3-a)^2-\sqrt{6^2}.\sqrt{a^2}\)

                                             \(=(3-a)^2-6.\left|a\right|\).

+) \(TH1\): Nếu \(a\geq 0\Rightarrow |a|=a\).

Do đó: \((3 - a)^{2}- 6\left|a\right|=(3-a)^2-6a\)

                                        \(=(3^2-2.3.a+a^2)-6a\)

                                        \(=(9-6a+a^2)-6a\)

                                        \(=9-6a+a^2-6a\)

                                        \(=a^2+(-6a-6a)+9\)

                                        \(=a^2+(-12a)+9\)

                                        \(=a^2-12a+9\).

+) \(TH2\): Nếu \(a<0\Rightarrow |a|=-a\).

Do đó: \((3 - a)^{2}- 6\left|a\right| =(3-a)^2-6.(-a)\)

                                        \(=(3^2-2.3.a+a^2)-(-6a)\)

                                        \(=(9-6a+a^2)+6a\)

                                        \(=9-6a+a^2+6a\)

                                        \(=a^2+(-6a+6a)+9\)

                                        \(=a^2+9\).

Vậy \((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2-12a+9\),   nếu \(a \ge 0\).

        \((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2+9\),   nếu   \(a <0\). 

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan