Bài 23 trang 15 SGK Toán 9 tập 1

Bình chọn:
4.6 trên 57 phiếu

Giải bài 23 trang 15 SGK Toán 9 tập 1. Chứng minh.

Đề bài

Chứng minh.

a) \((2 - \sqrt{3})(2 + \sqrt{3}) = 1\);

b) \((\sqrt{2006} - \sqrt{2005})\) và \((\sqrt{2006} + \sqrt{2005})\) là hai số nghịch đảo của nhau.

Phương pháp giải - Xem chi tiết

Sử dụng các công thức sau:

+) \(a^2-b^2=(a-b)(a+b)\).

+) \((\sqrt{a})^2=a\),   với \(a \ge 0\).

Lời giải chi tiết

Câu a: Ta có:

\((2 - \sqrt{3})(2 + \sqrt{3})=2^2-(\sqrt{3})^2=4-3=1\)

Câu b: Muốn chứng minh hai số là nghịch đảo của nhau ta chứng minh tích của chúng bằng \(1\). 

Ta tìm tích của hai số \((\sqrt{2006} - \sqrt{2005})\) và \((\sqrt{2006} + \sqrt{2005})\)

Ta có:

\((\sqrt{2006} + \sqrt{2005}).(\sqrt{2006} - \sqrt{2005})\)

= \((\sqrt{2006})^2-(\sqrt{2005})^2\)

\(=2006-2005=1\)

Do đó  \( (\sqrt{2006} + \sqrt{2005}).(\sqrt{2006} - \sqrt{2005})=1\)

\(\Leftrightarrow \sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

Vậy hai số trên là nghịch đảo của nhau!

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 3. Liên hệ giữa phép nhân và phép khai phương

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu