

Bài 24 trang 15 SGK Toán 9 tập 1>
Rút gọn và tìm giá trị (làm tròn đến chữ số thập phân thứ 3) của các căn thức sau:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Rút gọn và tìm giá trị (làm tròn đến chữ số thập phân thứ \(3\)) của các căn thức sau:
\(a)\) \( \sqrt{4(1 + 6x + 9x^{2})^{2}}\) tại \(x = - \sqrt 2 \);
\(b)\) \( \sqrt{9a^{2}(b^{2} + 4 - 4b)}\) tại \(a = - 2;\,\,b = - \sqrt 3 \).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng các công thức sau:
+) \((a+b)^2=a^2+2ab+b^2\).
+) \((a-b)^2=a^2-2ab+b^2\).
+) \( \sqrt{a.b}=\sqrt{a}.\sqrt{b}\), với \(a ,\ b \ge 0\).
+) \(\sqrt{a^2}=\left|a\right|\).
+) Nếu \(a \ge 0\) thì \(\left|a\right|=a\).
Nếu \(a<0\) thì \(\left| a\right|=-a\).
+) \(a^m. b^m=(ab)^m\), với \(m ,\ n \in \mathbb{Z}\).
Lời giải chi tiết
a) Ta có:
\( \sqrt{4(1 + 6x + 9x^{2})^{2}}\) \(=\sqrt {4}. \sqrt {{{(1 + 6x + 9{x^2})}^2}} \)
\(=\sqrt{4}.\sqrt{(1+2.3x+3^2.x^2)^2}\)
\(=\sqrt{2^2}.\sqrt{\left[1^2+2.3x+(3x)^2\right]^2}\)
\(=2.\sqrt {{{\left[ {{{\left( {1 + 3x} \right)}^2}} \right]}^2}} \)
\(=2.\left|(1+3x)^2\right|\)
\(=2(1+3x)^2\).
(Vì \( (1+3x)^2 > 0 \) với mọi \(x\) nên \(\left|(1+3x)^2\right|=(1+3x)^2 \))
Thay \(x = - \sqrt 2 \) vào biểu thức rút gọn trên, ta được:
\( 2{\left[ {1 + 3.(-\sqrt 2) } \right]^2}=2(1-3\sqrt{2})^2\).
Bấm máy tính, ta được: \( 2{\left( {1 - 3\sqrt 2 } \right)^2} \approx 21,029\).
b) Ta có:
\( \sqrt{9a^{2}(b^{2} + 4 - 4b)} =\sqrt{3^2.a^2.(b^2-4b+4)}\)
\(=\sqrt{(3a)^2.(b^2-2.b.2+2^2)}\)
\(=\sqrt{(3a)^2}. \sqrt{(b-2)^2}\)
\(=\left|3a\right|. \left|b-2\right| \)
Thay \(a = -2\) và \(b = - \sqrt 3 \) vào biểu thức rút gọn trên, ta được:
\(\left| 3.(-2)\right|. \left| -\sqrt{3}-2\right| =\left|-6\right|.\left|-(\sqrt{3}+2) \right|\)
\(=6.(\sqrt{3}+2)=6\sqrt{3}+12\).
Bấm máy tính, ta được: \(6\sqrt{3}+12 \approx 22,392\).


- Bài 25 trang 16 SGK Toán 9 tập 1
- Bài 26 trang 16 SGK Toán 9 tập 1
- Bài 27 trang 16 SGK Toán 9 tập 1
- Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 1 - Đại số 9
>> Xem thêm
Các bài khác cùng chuyên mục