Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Hàm số nào sau đây là hàm số bậc nhất?

a. \(y = {1 \over {\sqrt 2 }}x + 2\) 

b. \(y = {1 \over {\sqrt {2x} }} + 1\)

c. \(y = \left( {{a^2} + 1} \right)x + 1\) 

Bài 2. Cho hàm số \(y = f\left( x \right) = ax + b.\) Tìm a, b biết: \(f\left( 0 \right) = \sqrt 2 \) và \(f\left( {\sqrt 2 } \right) = 1\)

Bài 3. Cho hàm số \(y = f\left( x \right) = mx + m + 1.\) Tìm m biết \(f(1) = 3\).

Bài 4. Tìm k để hàm số \(y = \left( {5 - k} \right)x + 2\) đồng biến trên \(\mathbb R\).

LG bài 1

Phương pháp giải:

Hàm số \(y = ax + b\) là hàm số bậc nhất khi \(a  ≠ 0.\)

Lời giải chi tiết:

a. Ta có hệ số \(a = {1 \over {\sqrt 2 }} \ne 0 \Rightarrow \) Hàm số \(y = {1 \over {\sqrt 2 }}x + 2\) là hàm số bậc nhất.   

b. Hàm số \(y = {1 \over {\sqrt {2x} }} + 1\) không phải là hàm số bậc nhất. 

c. Vì \({a^2} + 1 > 0,\) với mọi a nên hàm số \(y = \left( {{a^2} + 1} \right)x + 1\) là hàm số bậc nhất.

LG bài 2

Phương pháp giải:

Sử dụng \(f\left( 0 \right) = \sqrt 2\) để tìm \(b\) và \(f\left( {\sqrt 2 } \right) = 1\) để tìm \(a\).

Lời giải chi tiết:

Ta có: \(f\left( 0 \right) = \sqrt 2  \Leftrightarrow a.0 + b = \sqrt 2\)\(\,  \Leftrightarrow b = \sqrt 2 \)

Vậy : \(f\left( x \right) = ax + \sqrt 2 \) 

Lại có: \(f\left( {\sqrt 2 } \right) = 1 \Leftrightarrow a.\sqrt 2  + \sqrt 2  = 1 \)\(\,\Leftrightarrow a = {{1 - \sqrt 2 } \over {\sqrt 2 }}\)

Vậy : \(y = {{1 - \sqrt 2 } \over {\sqrt 2 }}x + \sqrt 2 \)

LG bài 3

Phương pháp giải:

Thay \(x=1;y=3\) vào hàm số để tìm \(m\).

Lời giải chi tiết:

Ta có: \(f\left( 1 \right) = 3 \Leftrightarrow m.1 + m + 1 = 3\)

\(\Leftrightarrow 2m = 2 \Leftrightarrow m = 1\)

LG bài 4

Phương pháp giải:

Hàm số \(y = ax + b\) đồng biến trên \(\mathbb R\) khi \(a>0\)

Lời giải chi tiết:

Hàm số \(y = \left( {5 - k} \right)x + 2\) đồng biến \( \Leftrightarrow 5 - k > 0 \Leftrightarrow k < 5.\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Hàm số bậc nhất

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài