Bài 14 trang 48 SGK Toán 9 tập 1


Giải bài 14 trang 48 SGK Toán 9 tập 1. Cho hàm số bậc nhất

Đề bài

Cho hàm số bậc nhất \(y = (1 - \sqrt{5}) x - 1\).

a) Hàm số trên là đồng biến hay nghịch biến trên \(\mathbb{R}\) ? Vì sao ?

b) Tính giá trị của \(y\) khi \(x = 1 + \sqrt{5}\);

c) Tính giá trị của \(x\) khi \(y=\sqrt{5}\). 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) +) Hàm số bậc nhất \(y=ax+b\) xác định với mọi giá trị của \(x\) trên \(\mathbb{R}\)

  -  Đồng biến trên \(\mathbb{R}\)  khi \( a > 0\). 

  -  Nghịch biến trên \(\mathbb{R}\)  khi \(a < 0\).

+) Sử dụng định lí so sánh hai căn bậc hai số học của hai số không âm:

            \(a < b \Leftrightarrow  \sqrt a < \sqrt b,\)  với \(a,\ b \ge 0\).

b) +) Thay \(x_0\) vào công thức hàm số \(y=ax+b\) tính được giá trị của hàm số: \(y_0=ax_0+b\).

     +) Sử dụng hằng đẳng thức: \(  a^2-b^2=(a-b)(a+b).\)

c) +) Thay \(x_0\) vào công thức hàm số \(y=ax+b\) tính được giá trị của hàm số: \(y_0=ax_0+b\).

     +) Sử dụng hằng đẳng thức:

            \( (a+b)^2=a^2+2ab+b^2\).

            \(  a^2-b^2=(a-b)(a+b).\)

+) Sử dụng công thức trục căn thức ở mẫu:

        \(\dfrac{C}{\sqrt A \pm B}=\dfrac{C(\sqrt A \mp B)}{A - B^2}\)

Lời giải chi tiết

a) Hàm số \(y = (1 - \sqrt{5}) x - 1\) có hệ số \(a=1-\sqrt 5<0\)

(Vì: \(1 < 5 \Leftrightarrow \sqrt 1<\sqrt{5}\) \(\Leftrightarrow 1<\sqrt{5}\)\(\Leftrightarrow 1-\sqrt{5}<0)\)

Vậy hàm số \(y = (1 - \sqrt{5}) x - 1\) nghịch biến trên \(\mathbb{R}\) (vì hệ số \(a\) âm).

b) 

Thay \(x = 1 + \sqrt{5}\) vào công thức của hàm số đã cho, ta được: 

           \( y=(1-\sqrt{5})(1+\sqrt{5})-1\)

       \(\Leftrightarrow y= [1^2 -(\sqrt 5)^2]-1\)

      \(\Leftrightarrow y= (1-5)-1\)

      \(\Leftrightarrow y= -4-1\)

      \(\Leftrightarrow y= -5\)

Vậy \(x = 1 + \sqrt{5}\) thì \(y= -5\).

c) Ta có:

Thay \(y=\sqrt{5}\) vào công thức của hàm số, ta được:

\(\sqrt{5}=(1-\sqrt{5})x-1 \)

\(\Leftrightarrow (1-\sqrt 5)x=\sqrt 5 +1\)

\(\Leftrightarrow x=\dfrac{\sqrt 5 +1}{1-\sqrt 5}\)

\(\Leftrightarrow x=\dfrac{(\sqrt 5 +1)(\sqrt 5 +1)}{(1-\sqrt 5)(\sqrt 5 +1)}\)

\(\Leftrightarrow x = \dfrac{(\sqrt 5 +1)^2}{1^2-(\sqrt 5)^2}\)

\(\Leftrightarrow x = \dfrac{(\sqrt 5)^2+2\sqrt 5 +1}{1-5}\)

\(\Leftrightarrow x = \dfrac{ 5+2\sqrt 5 +1}{-4}\)

\(\Leftrightarrow x = -\dfrac{ 6+2\sqrt 5 }{4}\)

\(\Leftrightarrow x = -\dfrac{ 2(3+\sqrt 5)}{2.2}\)

\(\Leftrightarrow x = -\dfrac{ 3+\sqrt 5 }{2}\)

Vậy \(y=\sqrt 5\) thì \(x=-\dfrac{3+\sqrt 5}{2}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 70 phiếu

Các bài liên quan: - Bài 2. Hàm số bậc nhất

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài