Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Cho hàm số \(y =  - x + b.\) Tìm b, biết rằng khi \(x = 1\) thì \(y = 5\). 

Bài 2. Chứng minh hàm số \(y =  - \sqrt 3 x + 1\) nghịch biến trên \(\mathbb R\) bằng định nghĩa

Bài 3. Tìm m để hàm số \(y = \left( {1 - 2m} \right)x\) đồng biến trên \(\mathbb R\).

Bài 4. Cho hàm số \(y = f\left( x \right) = \left( {\sqrt 2  - 1} \right)x + \sqrt 2 \) 

So sánh : \(f\left( {\sqrt 2  + 1} \right)\) và \(f\left( {\sqrt 2  + 2} \right)\)

LG bài 1

Phương pháp giải:

Thay \(x=1;y=5\) vào hàm số đã cho để tìm \(b\).

Lời giải chi tiết:

Thay \(x=1;y=5\) vào hàm số đã cho, ta có: \(5 = -1 + b ⇒ b = 6.\) 

LG bài 2

Phương pháp giải:

Giả sử \({x_1} < {x_2}\) và \({x_1},{x_2} \in \mathbb R\). Xét hiệu \(H = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)\). 

+ Nếu \(H < 0\) thì hàm số đồng biến trên \(\mathbb R \)

+ Nếu \(H > 0\) thì hàm số nghịch biến trên \(\mathbb R \)

Lời giải chi tiết:

Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\).

Ta có:

\(\eqalign{  & f\left( {{x_1}} \right) =  - \sqrt 3 {x_1} + 1  \cr  & f\left( {{x_2}} \right) =  - \sqrt 3 {x_2} + 1  \cr  &  f\left( {{x_1}} \right) - f\left( {{x_2}} \right) =  - \sqrt 3 \left( {{x_1} - {x_2}} \right) > 0\cr&\left( {\text{Vì }\,{x_1} < {x_2} \Rightarrow {x_1} - {x_2} < 0} \right)  \cr  &  \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right) \cr} \)

Vậy hàm số nghịch biến trên \(\mathbb R\).

LG bài 3

Phương pháp giải:

Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:

a) Đồng biến trên R khi \(a > 0\) 

b) Nghịch biến trên R khi \(a < 0.\) 

Lời giải chi tiết:

Hàm số đồng biến trên \(\mathbb R\) \( \Leftrightarrow 1 - 2m > 0 \Leftrightarrow m < {1 \over 2}\)

LG bài 4

Phương pháp giải:

Sử dụng tính chất của hàm số đồng biến.

Lời giải chi tiết:

Hàm số đã cho có hệ số \(a = \sqrt 2  - 1 > 0\) nên hàm số đồng biến trên \(\mathbb R\). 

Lại có : \(\sqrt 2  + 1 < \sqrt 2  + 2\) \( \Rightarrow f\left( {\sqrt 2  + 1} \right) < f\left( {\sqrt 2  + 2} \right)\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Hàm số bậc nhất

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài