 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
                                                        Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
                                                    Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 2 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 2 - Hình học 9
Đề bài
Bài 1. Cho điểm M nằm bên trong đường tròn (O; R). Dựng qua M hai dây AB và CD sao cho \(AB > CD\). Gọi H, K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng : \(MH > MK.\)
Bài 2. Cho đường tròn (O) đường kính AB. Chứng minh rằng nếu hai dây cung AC và BD song song thì bằng nhau.
Phương pháp giải - Xem chi tiết
Sử dụng:
- Định lý Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương các cạnh góc vuông
- Trong một đường tròn:
+) Hai dây bằng nhau thì cách đều tâm.
+) Hai dây cách đều tâm thì bằng nhau.
+) Dây nào lớn hơn thì dây đó gần tâm hơn.
+) Dây nào gần tâm hơn thì dây đó lớn hơn.
Lời giải chi tiết
Bài 1.

Nối M với O. Xét tam giác vuông OHM, ta có:
\(HM = \sqrt {O{M^2} - O{H^2}}\)\(\; = \sqrt {O{M^2} - O{H^2}} \) (định lí Pi-ta-go)
Tương tự với tam giác vuông OKM, có:
\(KM = \sqrt {O{M^2} - O{K^2}} \)
Mà \(AB > CD ⇒ OH < OK\)
Do đó \(MH > MK\)
Bài 2.

Kẻ \(OE ⊥ AC\) thì đường thẳng \(OE ⊥ BD\) và cắt BD tại F (vì AC // BD)
Xét hai tam giác vuông AEO và BOF có:
+) \(OA = OB (=R)\)
+) \({\widehat O_1} = {\widehat O_2}\) (đối đỉnh)
Do đó \(∆AEO = ∆BOF\) (cạnh huyền – góc nhọn)
\(⇒ OE = OF\)
\(⇒ AC = BD\) (định lí dây cung và khoảng cách đến tâm).
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻCác bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            