

Bài 15 trang 106 SGK Toán 9 tập 1>
Tổng hợp đề thi vào 10 tất cả các tỉnh thành trên toàn quốc
Toán - Văn - Anh
Đề bài
Cho hình \(70\) trong đó hai đường tròn cùng có tâm là \(O\). Cho biết \(AB>CD\).
Hãy so sánh các độ dài:
a) \(OH\) và \(OK\);
b) \(ME\) và \(MF\);
c) \(MH\) và \(MK\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Để so sánh hai dây, ta đi so sánh khoảng cách từ tâm đến hai dây ấy và ngược lại.
+) Sử dụng tính chất: Trong một đường tròn:
a) Dây nào lớn hơn thì dây đó gần tâm hơn.
b) Dây nào gần tâm hơn thì dây đó lớn hơn.
c) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Lời giải chi tiết
a) Xét trong đường tròn nhỏ:
Theo định lí \(2\): trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.
Theo giả thiết \(AB > CD\) suy ra \(AB\) gần tâm hơn, tức là \(OH < OK \).
b) Xét trong đường tròn lớn:
Theo định lí \(2\): trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.
Theo câu \(a\), ta có: \(OH < OK \Rightarrow ME > MF\).
c) Xét trong đường tròn lớn:
Vì \(OH \bot ME \Rightarrow EH=MH=\dfrac{ME}{2}\) (Định lý 2 - trang 103).
Vì \(OK \bot MF \Rightarrow KF=MK=\dfrac{MF}{2}\) (Định lý 2 - trang 103).
Theo câu \(b\), ta có: \(ME > MF \Rightarrow \dfrac{ME}{2} > \dfrac{MF}{2} \Leftrightarrow MH > MK\)
Loigiaihay.com


- Bài 16 trang 106 SGK Toán 9 tập 1
- Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 2 - Hình học 9
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết đường thẳng song song và đường thẳng cắt nhau.
- Lý thuyết Hệ thức Vi-ét và ứng dụng.
- Lý thuyết về đường kính và dây của đường tròn
- Lý thuyết góc nội tiếp
- Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
- Lý thuyết. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
- Lý thuyết Công thức nghiệm của phương trình bậc hai
- Lý thuyết góc tạo bởi tia tiếp tuyến và dây cung
- Lý thuyết về dấu hiệu nhận biết tiếp tuyến của đường tròn
- Lý thuyết góc ở tâm. số đo cung