Bài 12 trang 106 SGK Toán 9 tập 1

Bình chọn:
4.9 trên 46 phiếu

Giải bài 12 trang 106 SGK Toán 9 tập 1. Gọi I là điểm thuộc dây AB sao cho AI=1cm. Kẻ dây CD đi qua I và vuông góc với AB.

Đề bài

Cho đường tròn tâm \(O\) bán kính \(5cm\), dây \(AB\) bằng \(8cm\).

a) Tính khoảng cách từ tâm \(O\) đến dây \(AB\).

b) Gọi \(I\) là điểm thuộc dây \(AB\) sao cho \(AI=1cm\). Kẻ dây \(CD\) đi qua \(I\) và vuông góc với \(AB\). Chứng minh rằng \(CD=AB\).

Phương pháp giải - Xem chi tiết

a) +) Sử dụng tính chất: trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

 +) Sử dụng định lí Pytago: \(\Delta{ABC}\), vuông tại \(A\) thì \(BC^2=AC^2+AB^2\).

b) Sử dụng tính chất: Trong một đường tròn, hai dây cách đều nhau thì bằng nhau.

Lời giải chi tiết

a) Kẻ \(OH\perp AB\). Suy ra \(H\) là trung điểm của dây \(AB\). (Theo định lí 2 - trang 103)

\(\Rightarrow HA=HB=\dfrac{AB}{2}=\dfrac{8}{2}=4cm.\)

Xét tam giác \(HOB\) vuông tại \(H\), theo định lí Pytago, ta có:

\(OB^2=OH^2+HB^2 \Leftrightarrow OH^{2}=OB^{2}-HB^{2}\)

\(\Leftrightarrow OH^2=5^{2}-4^{2}=25-16=9\Rightarrow OH=3(cm)\).

Vậy khoảng cách từ tâm \(O\) đến dây \(AB\) là \(3cm\).

b) Vẽ \(OK\perp CD\).

Tứ giác \(KOHI\) có ba góc vuông nên là hình chữ nhật, suy ra \(OK=HI\).

Ta có \(HI=AH-AI=4-1=3cm\), suy ra \(OK=3cm.\)

Vậy \(OH=OK = 3cm.\)

Hai dây \(AB\) và \(CD\) cách đều tâm nên chúng bằng nhau.

Do đó \(AB = CD.\)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan