Đề kiểm tra 15 phút - Đề số 3 - Bài 10 - Chương 3 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 10 - Chương 3 - Hình học 9

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Hình viên phân là phần hình tròn bao gồm giữa một cung và dây trước cung ấy. Hãy tính diện tích hình viên phân AmB theo R. Biết góc ở tâm \(\widehat {AOB} = 120^\circ \) và bán kính hình tròn là R.

Phương pháp giải - Xem chi tiết

Sử dụng:

\({S_q} =\dfrac {{\pi {R^2}n}}{ {360}}\)

Diện tích hình viên phân: \(S = {S_q} - {S_{AOB}}\)

Lời giải chi tiết

Kẻ đường cao OH.

Ta có \(\widehat {AOB} = 120^\circ  \Rightarrow \widehat {OAB} = \widehat {OBA} = 30^\circ \) nên trong tam giác vuông AHO, ta có

\(OH = \dfrac{R }{ 2}\) và \(AH = \dfrac{{R\sqrt 3 } }{2} \Rightarrow AB = R\sqrt 3 \).

Vậy \(S_{AOB}=\dfrac{1 }{2}AB.OH =\dfrac {1 }{ 2}R\sqrt 3 .\dfrac{R }{2} \)\(\,= \dfrac{{{R^2}\sqrt 3 }}{ 4}\) (đvdt)

\({S_q} =\dfrac {{\pi {R^2}n}}{ {360}} =\dfrac {{\pi {R^2}.120} }{ {360}} =\dfrac {{\pi {R^2}} }{ 3}\) (đvdt)

Do đó : \(S = {S_q} - {S_{AOB}} = \dfrac{{\pi {R^2}}}{ 3} - \dfrac{{{R^2}\sqrt 3 }}{4}\)\(\, = \dfrac{{{R^2}\left( {4\pi  - 3\sqrt 3 } \right)} }{ {12}}\) (đvdt).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí