
Đề bài
a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).
b) Tính diện tích miền gạch sọc.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Sử dụng compa và thước thẳng để vẽ hình.
+) Áp dụng công thức tính diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac{{\pi {R^2}n}}{{360}}.\)
+) Áp dụng diện tích hình tròn bán kính \(R\) là \(S= \pi R^2\)
Lời giải chi tiết
a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)
Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)
Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(B\), bán kính \(2cm\), ta được cung \(\overparen{DE}\)
Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(C\), bán kính \(3cm\), ta được cung \(\overparen{EF}\)
b) Diện tích hình quạt \(CAD\) là \(\dfrac{1}{3}\) \(π.1^2\)
Diện tích hình quạt \(DBE\) là \(\dfrac{1}{3}\) \(π.2^2\)
Diện tích hình quạt \(ECF\) là \(\dfrac{1}{3}\) \(π.3^2\)
Diện tích phần gạch sọc là \(\dfrac{1}{3}.π.1^2+ \dfrac{1}{3}.π.2^2 +\dfrac{1}{3}.π.3^2\)
\(=\dfrac{1}{3}\) \(π (1^2 + 2^2 + 3^2) = \dfrac{14}{3}π\) (\(cm^2\))
Loigiaihay.com
Các bài liên quan: - Bài 10. Diện tích hình tròn, hình quạt tròn
Các bài khác cùng chuyên mục