Bài 84 trang 99 SGK Toán 9 tập 2

Bình chọn:
3.9 trên 28 phiếu

Giải bài 84 trang 99 SGK Toán 9 tập 2. a) Vẽ lại hình tạo bởi các cung tròn

Đề bài

a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).

b) Tính diện tích miền gạch sọc.

Phương pháp giải - Xem chi tiết

+) Sử dụng compa và thước thẳng để vẽ hình.

+) Áp dụng công thức tính diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \frac{{\pi {R^2}n}}{{360}}.\)

Lời giải chi tiết

a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)

Vẽ \(\frac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)

Vẽ \(\frac{1}{3}\) đường tròn tâm \(B\), bán kính \(2cm\), ta được cung \(\overparen{DE}\)

Vẽ \(\frac{1}{3}\) đường tròn tâm \(C\), bán kính \(3cm\), ta được cung \(\overparen{EF}\)

b) Diện tích hình quạt \(CAD\) là \(\frac{1}{3}\) \(π.1^2\)

Diện tích hình quạt \(DBE\) là \(\frac{1}{3}\) \(π.2^2\) 

Diện tích hình quạt \(ECF\) là \(\frac{1}{3}\) \(π.3^2\)

Diện tích phần gạch sọc là  \(\frac{1}{3}.π.1^2+ \frac{1}{3}.π.2^2 +\frac{1}{3}.π.3^2\)

                                       \(=\frac{1}{3}\) \(π (1^2 + 2^2 + 3^2) = \frac{14}{3}π\) (\(cm^2\))

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan