Bài 84 trang 99 SGK Toán 9 tập 2


Đề bài

a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).

b) Tính diện tích miền gạch sọc.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng compa và thước thẳng để vẽ hình.

+) Áp dụng công thức tính diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac{{\pi {R^2}n}}{{360}}.\)

+) Áp dụng diện tích hình tròn bán kính \(R\) là \(S= \pi R^2\) 

Lời giải chi tiết

a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)

Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)

Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(B\), bán kính \(2cm\), ta được cung \(\overparen{DE}\)

Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(C\), bán kính \(3cm\), ta được cung \(\overparen{EF}\)

b) Diện tích hình quạt \(CAD\) là \(\dfrac{1}{3}\) \(π.1^2\)

Diện tích hình quạt \(DBE\) là \(\dfrac{1}{3}\) \(π.2^2\) 

Diện tích hình quạt \(ECF\) là \(\dfrac{1}{3}\) \(π.3^2\)

Diện tích phần gạch sọc là  \(\dfrac{1}{3}.π.1^2+ \dfrac{1}{3}.π.2^2 +\dfrac{1}{3}.π.3^2\)

\(=\dfrac{1}{3}\) \(π (1^2 + 2^2 + 3^2) = \dfrac{14}{3}π\) (\(cm^2\))

Loigiaihay.com


Bình chọn:
4 trên 39 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.