Bài 85 trang 100 SGK Toán 9 tập 2

Bình chọn:
4.4 trên 25 phiếu

Giải bài 85 trang 100 SGK Toán 9 tập 2. Hình viên phân là hình tròn

Đề bài

Hình viên phân là hình tròn giới hạn bởi một cung tròn và dây căng cung ấy. Hãy tính diện tích hình viên phân \(AmB\), biết góc ở tâm \(\widehat {AOB} = {60^0}\) và bán kính đường tròn là \(5,1 cm\) (h.64)

Phương pháp giải - Xem chi tiết

+) Diện tích hình viên phân = Diện tích cung tròn \(AmB\) - Diện tích tam giác \(OAB.\)

Lời giải chi tiết

\(∆OAB\) là tam giác đều có cạnh bằng \(R = 5,1cm\). Áp dụng công thức tính diện tích tam giác đều cạnh \(a\) là \({{{a^2}\sqrt 3 } \over 4}\) ta có 

 \({S_{\Delta OBC}} = {{{R^2}\sqrt 3 } \over 4}\)           (1)

Diện tích hình quạt tròn \(AOB\) là:

 \({{\pi .{R^2}{{.60}^0}} \over {{{360}^0}}} = {{\pi {R^2}} \over 6}\)     (2)

Từ (1) và (2) suy ra diện tích hình viên phân là:

\({{\pi {R^2}} \over 6} - {{{R^2}\sqrt 3 } \over 4} = {R^2}\left( {{\pi  \over 6} - {{\sqrt 3 } \over 4}} \right)\)

Thay \(R = 5,1\) ta có \(S\)viên phân ≈\( 2,4\) (\(cm^2\))

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan