Bài 82 trang 99 SGK Toán 9 tập 2

Bình chọn:
3.7 trên 34 phiếu

Giải bài 82 trang 99 SGK Toán 9 tập 2. Điền vào ô trống trong bảng sau

Đề bài

Điền vào ô trống trong bảng sau (làm tròn kết quả đến chữ số thập phân thứ nhất)

 

Phương pháp giải - Xem chi tiết

+) Độ dài đường tròn bán kính \(R\) là: \(C=2\pi R.\)

+) Độ dài cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(l = \dfrac{{\pi Rn}}{{180}}.\)

+) Diện tích hình tròn bán kính \(R\) là: \(S=\pi R^2.\)

+) Diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac{{\pi R^2n}}{{360}}.\)

Lời giải chi tiết

- Dòng thứ nhất:

 \( R\) = \(\dfrac{C}{2\pi }\) = \(\dfrac{13,2}{2. 3,14 }\) \(≈ 2,1\) (\(cm\))

\(S = π. R^2 = 3,14.{(2,1)}^2 ≈ 13,8 \)(\(cm^2\))

\({R_{quạt}}\)\(=\dfrac{\pi R^{2}n^{\circ}}{360^{\circ}}\) \(=\dfrac{3,14 .2,1^{2}.47,5}{360}\) \(≈ 1,83\)  (\(cm^2\))

- Dòng thứ hai:

\(C = 2πR = 2. 3,14. 2,5 = 15,7\) (cm)

\(S = π. R^2 = 3,14.{(2,5)}^2 ≈ 19,6\) (\(cm^2\))

\(n^0\)\(=\dfrac{S_{quat}.360^{\circ}}{\pi R^{2}}\)\(=\dfrac{12,5.360^{\circ}}{3,14.2,5^{2}}\)\(≈ 229,3^0\)  

- Dòng thứ ba:

\(R\) \(=\sqrt{\dfrac{s}{\pi }}\)  \(=\sqrt{\dfrac{37,8}{3,14 }}\) \(≈ 3,5\) (\(cm\))

\(C = 2πR = 22\) (\(cm\))

\(n^0\)\(=\dfrac{S_{quạt}.360^{\circ}}{\pi R^{2}}\) \(=\dfrac{10,6.360^{\circ}}{3,14.3,5^{2}}\) \(≈ 99,2^0\)  

Điền vào các ô trống ta được các bảng sau:

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com