Bài 6 trang 9 SGK Toán 8 tập 2

Bình chọn:
4.3 trên 163 phiếu

Giải bài 6 trang 9 SGK Toán 8 tập 2. Tính diện tích của hình thang ABCD (h.1) theo x bằng hai cách:

Đề bài

Tính diện tích của hình thang ABCD (h.1) theo x bằng hai cách:

1) Tính theo công thức S = BH x (BC + DA) : 2;

2) S = SABH + SBCKH + SCKD. Sau đó sử dụng giả thiết S = 20 để thu được hai phương trình tương đương với nhau. Trong hai phương trình ấy, có phương trình nào là phương trình bậc nhất không?

Phương pháp giải - Xem chi tiết

Áp dụng định nghĩa phương trình bậc nhất một ẩn.

Lời giải chi tiết

Gọi S là diện tích hình thang ABCD.

1) Theo công thức

                    S = \( \frac{BH(BC+DA)}{2}\)

Ta có: AD = AH + HK + KD

=> AD = 7 + x + 4 = 11 + x

Do đó: S = \( \frac{x(11+2x)}{2}\)

2) Ta có: S = SABH + SBCKH + SCKD

                 = \( \frac{1}{2}\).AH.BH + BH.HK + \( \frac{1}{2}\)CK.KD

                  = \( \frac{1}{2}\).7x + x.x + \( \frac{1}{2}\)x.4

                  = \( \frac{7}{2}\)x + x2 + 2x 

Vậy S = 20 ta có hai phương trình:

                   \( \frac{x(11+2x)}{2}\) = 20                     (1)

                   \( \frac{7}{2}\)x + x2 + 2x  = 20                  (2)

Cả hai phương trình không có phương trình nào là phương trình bậc nhất.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan