Bài 19 trang 80 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho (O) và dây AB của đường tròn O. Trên AB lấy hai điểm E và F sao cho AE = BF. Tia OE và tia OF cắt (O) lần lượt tại C và D.

Đề bài

Cho (O) và dây AB của đường tròn O. Trên AB lấy hai điểm E và F sao cho AE = BF. Tia OE và tia OF cắt (O) lần lượt tại C và D.

a) Chứng minh sđ cung AC = sđ cung BD .

b) Gọi I là điểm chính giữa cung AB.Chứng minh I là điểm chính giữa cung CD.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta AEC = \Delta BFD\,\,\left( {c.g.c} \right) \Rightarrow AC = BD \Rightarrow cung\,AC = cung\,BD\).

b) Chứng minh \(\widehat {COI} = \widehat {DOI} \Rightarrow sdcung\,CI = sd\,cung\,DI \Rightarrow cung\,CI = cung\,DI\)

Lời giải chi tiết

 

a) Xét tam giác OAB có \(OA = OB = R \Rightarrow \Delta OAB\) cân tại O \( \Rightarrow \widehat {OAB} = \widehat {OBA}\) (hai góc ở đáy của tam giác cân).

Xét tam giác OAE và tam giác OBF có:

\(\begin{array}{l}OA = OB = R;\\\widehat {OAB} = \widehat {OBA}\,\,\left( {cmt} \right);\\AE = BF\,\,\left( {gt} \right)\\ \Rightarrow \Delta OAE = \Delta OBF\,\,\left( {c.g.c} \right)\\ \Rightarrow OE = OF\end{array}\)

\(\Delta OEF\) cân tại O \( \Rightarrow \widehat {OEF} = \widehat {OFE}\).

Ta lại có: \(\widehat {AEC} = \widehat {OEF}\,\,\,\left( {dd} \right);\,\,\widehat {BFD} = \widehat {OFE}\,\,\left( {dd} \right)\)

\(\Rightarrow \widehat {AEC} = \widehat {BFD}\)

Ta có: \(OC = OD = R;\,\,OE = OF\,\,\left( {cmt} \right)\) \( \Rightarrow EC = FD\)

Xét tam giác AEC và tam giác BFD có :

\(\begin{array}{l}AE = BF\,\,\left( {gt} \right);\\\widehat {AEC} = \widehat {BFD}\,\,\left( {cmt} \right);\\EC = FD\,\,\left( {cmt} \right)\end{array}\)

\( \Rightarrow \Delta AEC = \Delta BFD\,\,\left( {c.g.c} \right)\)

\(\Rightarrow AC = BD \)

\(\Rightarrow cung\,AC = cung\,BD\) (hai dây bằng nhau căng hai cung bằng nhau).

b) Vì \(\Delta OAE = \Delta OBF\,\,\left( {cmt} \right)\)

\(\Rightarrow \widehat {AOE} = \widehat {BOF}\,\,\left( 1 \right)\) (2 góc tương ứng).

I là điểm chính giữa cung AB \( \Rightarrow cung\,AI = cung\,BI \) \(\Rightarrow \widehat {AOI} = \widehat {BOI}\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow \widehat {COI} = \widehat {DOI} \) \(\Rightarrow sdcung\,CI = sd\,cung\,DI \) \(\Rightarrow cung\,CI = cung\,DI\).

Vậy I là điểm chính giữa của cung CD.

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng