Bài 17 trang 80 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Trên đường tròn (O; R) lấy 4 điểm theo thứ tự A, B, C, D sao cho

Đề bài

Trên đường tròn (O; R) lấy 4 điểm theo thứ tự A, B, C, D sao cho \(cung\,AB = cung\,BC = cung\,CD = cung\,DA.\)

a) Chứng minh rằng tứ giác ABCD là một hình vuông.

b) Tính cạnh của hình vuông theo R.

Phương pháp giải - Xem chi tiết

a) Chứng minh ABCD là hình thoi có 1 góc vuông.

b) Áp dụng định lí Pytago trong tam giác vuông.

Lời giải chi tiết

 

a) Ta có \(cung\,AB = cung\,BC = cung\,CD = cung\,DA \)

\(\Rightarrow AB = BC = CD = DA \Rightarrow \) ABCD là hình thoi.

Xét tam giác ABC có \(BO = \dfrac{1}{2}AC = R \Rightarrow \Delta ABC\) vuông tại B (Trung tuyến ứng với một cạnh bằng nửa cạnh ấy) \( \Rightarrow \widehat {ABC} = {90^0} \Rightarrow ABCD\) là hình vuông (Hình thoi có 1 góc vuông).

b) Vì ABCD là hình vuông \( \Rightarrow AC \bot BD \Rightarrow \Delta OAB\) vuông tại O.

Lại có \(OA = OB = R\).

Áp dụng định lí Pytago ta có : \(AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{R^2} + {R^2}} \)\(\, = \sqrt {2{R^2}}  = R\sqrt 2 \).

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng