Bài 1 trang 79 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho đường tròn (O; 5 cm) và điểm M với OM = 10 cm. Qua M vẽ hai tiếp tuyến của đường tròn (O) tại A và B. Tính các góc ở tâm xác định bởi hai tia OA và OB.

Đề bài

Cho đường tròn (O; 5 cm) và điểm M với OM = 10 cm. Qua M vẽ hai tiếp tuyến của đường tròn (O) tại A và B. Tính các góc ở tâm xác định bởi hai tia OA và OB.

Phương pháp giải - Xem chi tiết

Gọi C là trung điểm của OM, chứng minh tam giác OAC đều.

Sử dụng tính chất hai tiếp tuyến cắt nhau: Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.

Lời giải chi tiết

 

Gọi C là trung điểm của OM \( \Rightarrow OC = \dfrac{1}{2}OM = 5 \Rightarrow C\) thuộc đường tròn \(\left( {O;5cm} \right)\).

Tam giác OAM vuông tại A có AC là đường trung tuyến

\( \Rightarrow AC = \dfrac{1}{2}OM = OC = OA = 5cm\)

\(\Rightarrow \Delta OAC\) đều \( \Rightarrow \widehat {AOC} = {60^0}\)

Lại có OM là đường phân giác của \(\widehat {AOB}\) (tính chất 2 tiếp tuyến cắt nhau)

\( \Rightarrow \widehat {AOB} = 2\widehat {AOC} = {2.60^0} = {120^0}\).

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng