Lý thuyết về căn bậc hai


Căn bậc hai số học Căn bậc hai của một số a không âm là số x sao cho x^2 = a. Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là √a và số âm kí hiệu là -√a. Số 0 có đúng một căn bậc hai là chính số 0, ta viết √0 = 0.

I. Căn bậc hai số học

1. Nhắc lại 

Ở lớp 7, ta đã biết:

+ Căn bậc hai của một số a không âm là số x sao cho \({x^{2\;}} = a.\)

+ Số dương a có đúng hai căn bậc hai là hai số đối nhau  là \(\sqrt a \)  và \( - \sqrt a \)

+ Số 0 có đúng một căn bậc hai là chính số 0, ta viết \(\sqrt 0  = 0.\)

Ví dụ: Số 9 có hai căn bậc hai là 3 và -3

2. ĐỊNH NGHĨA

Với  số dương \(a,\) số \(\sqrt a \)  được gọi là căn bậc hai số học của \(a.\)

Số 0 cũng được gọi là căn bậc hai số học của 0.

Ví dụ: Căn bậc hai số học của số 9 là \(\sqrt 9=3\)

Chú ý.:

Với \(a \ge 0,\) ta có:

+ Nếu \(x = \sqrt a \) thì \(\left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.\)

+ Nếu \(\left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.\)  thì \(x = \sqrt a .\)

Ta viết \(x = \sqrt a  \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.\)

 II. So sánh các căn bậc hai số học 

ĐỊNH LÍ:

Với hai số \(a;b\) không âm ta có \(a < b \Leftrightarrow \sqrt a  < \sqrt b \) 

Ví dụ: So sánh 3 và \(\sqrt 7\) 

Ta có: \(3 = \sqrt 9 \) mà \(9 > 7\) suy ra \(\sqrt 9  > \sqrt 7 \) hay \(3 > \sqrt 7 \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 102 phiếu

Các bài liên quan: - Bài 1. Căn bậc hai

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài