Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 1 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. So sánh (không dùng máy tính hay bảng số):

a. 2 và \(\sqrt 5 \)                            

b. 2 và \(\sqrt 5  - 3\)

Bài 2. Tìm x, biết:

a. \({x^2} = 2\)

b. \({x^2} = 5\)

Bài 3. Tìm x, biết:

a. \(\sqrt x  < \sqrt 2 \)

b. \(\sqrt x  > \sqrt {2 - x} \)

LG bài 1

Phương pháp giải:

Sử dụng biến đổi tương đương \(0 < a < b \Leftrightarrow \sqrt a  < \sqrt b \)

Lời giải chi tiết:

a. Ta có: \(2 < \sqrt 5  \Leftrightarrow {2^2} < {\left( {\sqrt 5 } \right)^2} \Leftrightarrow 4 < 5\) (hiển nhiên).

b. Ta có: \(2 > \sqrt 5  - 3 \Leftrightarrow 5 > \sqrt 5  \Leftrightarrow {5^2} > {\left( {\sqrt 5 } \right)^2}\)

\( \Leftrightarrow 25 > 5\) (hiển nhiên)

LG bài 2

Phương pháp giải:

Sử dụng \({x^2} = a\left( {a \ge 0} \right)\) 

\( \Leftrightarrow \left[ \begin{array}{l}
x = \sqrt a \\
x = - \sqrt a
\end{array} \right.\)

Lời giải chi tiết:

a. Ta có: \({x^2} = 2 \Leftrightarrow \left[ {\matrix{   {x = \sqrt 2 }  \cr   {x =  - \sqrt 2 }  \cr  } } \right.\) \(\left( {vì{{\left( { \pm \sqrt 2 } \right)}^2} = 2} \right)\) 

b. Ta có: \({x^2} = 5 \Leftrightarrow \left[ {\matrix{   {x = \sqrt 5 }  \cr   {x =  - \sqrt 5 }  \cr  } } \right.\) \(\left( {Vì{{\left( { \pm \sqrt 5 } \right)}^2} = 5} \right)\)

LG bài 3

Phương pháp giải:

Sử dụng: 

\(\begin{array}{l}
\sqrt {f\left( x \right)} > \sqrt {g\left( x \right)} \\
\Leftrightarrow f\left( x \right) > g\left( x \right) \ge 0
\end{array}\)

Lời giải chi tiết:

a. Ta có: \(\sqrt x  < \sqrt 2  \Leftrightarrow 0 \le x < 2\)

b. Ta có:

\(\eqalign{  & \sqrt x  > \sqrt {2 - x}  \Leftrightarrow x > 2 - x \ge 0  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x > 2 - x}  \cr   {2 - x \ge 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x > 1}  \cr   {x \le 2}  \cr  } } \right. \cr&\Leftrightarrow 1 < x \le 2. \cr} \)  

 Loigiaihay.com


Bình chọn:
4.4 trên 14 phiếu

Các bài liên quan: - Bài 1. Căn bậc hai

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài