Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Chứng minh rằng nếu \(a > 1\) thì \(a > \sqrt a .\) 

Bài 2. Chứng minh rằng với mọi x, ta có : \(\sqrt {{x^2} + 2x + 5}  \ge 2.\)

Bài 3. Chứng minh rằng \(\sqrt 3  - 5\) \(<-2\) (không dùng máy tính bỏ túi hay bảng số).

LG bài 1

Phương pháp giải:

Sử dụng: \(a > b \ge 0 \Leftrightarrow \sqrt a  > \sqrt b \)

Lời giải chi tiết:

Ta có: \(a > 1 \Rightarrow \sqrt a  > \sqrt 1  \Leftrightarrow \sqrt a  > 1.\)

Nhân hai vế của bất đẳng thức trên với số dương \(\sqrt a \), ta được:

\(\sqrt a .\sqrt a  > \sqrt a  \Leftrightarrow a > \sqrt a .\)

LG bài 2

Phương pháp giải:

Sử dụng: \(a > b \ge 0 \Leftrightarrow \sqrt a  > \sqrt b \)

Lời giải chi tiết:

Ta có: \({x^2} + 2x + 5 = {x^2} + 2x + 1 + 4 \) \(= {\left( {x + 1} \right)^2} + 4.\)

Vì \({\left( {x + 1} \right)^2} \ge 0,\) với mọi x thuộc \(\mathbb R\), nên :

\(\eqalign{  & {\left( {x + 1} \right)^2} + 4 \ge 4  \cr  &  \Rightarrow \sqrt {{{\left( {x + 1} \right)}^2} + 4}  \ge \sqrt 4   \cr  &  \Rightarrow \sqrt {{x^2} + 2x + 5}  \ge 2 \cr} \)

LG bài 3

Phương pháp giải:

Sử dụng:  \(a > b \ge 0 \Leftrightarrow \sqrt a  > \sqrt b \)

Lời giải chi tiết:

Ta có: \(\sqrt 3  -5< - 2 \Leftrightarrow \sqrt 3  < 5 - 2 \Rightarrow \sqrt 3  < 3\)

\( \Leftrightarrow {\left( {\sqrt 3 } \right)^2} < {3^2} \Leftrightarrow 3 < 9\) (hiển nhiên)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1. Căn bậc hai

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài