Đề kiểm tra 15 phút - Đề số 5 - Bài 1 - Chương 1 - Đại số 9

Bình chọn:
3.8 trên 6 phiếu

Giải Đề kiểm tra 15 phút - Đề số 5 - Chương 1 - Đại số 9

Đề bài

Bài 1. Tìm x, biết :

a. \(\sqrt {1 - x}  > 2\)

b. \(\sqrt {4 - x}  \le 2\)

Bài 2. Tìm x, biết: \(\sqrt {{x^2} + 1}  - x = 3\)

Bài 3. Chứng minh rằng với mọi x, ta có: \(\sqrt {{x^2} + 4}  \ge 2\)

Lời giải chi tiết

Bài 1. a. Ta có:

\(\sqrt {1 - x}  > 2 \Leftrightarrow 1 - x > 4 \Leftrightarrow x <  - 3\)

b.

\(\eqalign{  & \sqrt {4 - x}  \le 2 \Leftrightarrow 0 \le 4 - x \le 4  \cr  &  \Leftrightarrow \left\{ {\matrix{   {4 - x \ge 0}  \cr   {4 - x \le 4}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x \le 4}  \cr   {x \ge 0}  \cr  } } \right. \cr&\Leftrightarrow 0 \le x \le 4. \cr} \)

Bài 2. Ta có:

\(\eqalign{  & \sqrt {{x^2} + 1}  - x = 3\cr& \Leftrightarrow \sqrt {{x^2} + 1}  = x + 3  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x + 3 \ge 0}  \cr   {{x^2} + 1 = {{\left( {x + 3} \right)}^2}}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge  - 3}  \cr   {{x^2} + 1 = {x^2} + 6x + 9}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge  - 3}  \cr   {6x =  - 8}  \cr  } } \right. \Leftrightarrow x =  - {4 \over 3} \cr} \)

Bài 3. Ta có: \({x^2} \ge 0,\) với mọi x thuộc \(\mathbb R\)

\(\eqalign{  &  \Rightarrow {x^2} + 4 \ge 4  \cr  &  \Rightarrow \sqrt {{x^2} + 4}  \ge \sqrt 4 \cr&hay\;\sqrt {{x^2} + 4}  \ge 2\,\,(đpcm) \cr} \)

(Có thể bình phương hai vế của bất đẳng thức cần chứng minh).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 1. Căn bậc hai

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com