Đề kiểm tra 45 phút - Đề số 5 - Chương 1 - Hình học 9

Bình chọn:
3.2 trên 5 phiếu

Giải Đề kiểm tra 45 phút - Đề số 5 - Chương 1 - Hình học 9

Đề bài

Bài 1. Tính :

a. \(\left( {\cos 36^\circ  - \sin 36^\circ } \right).\left( {\cos 37^\circ  - \sin 38^\circ } \right).\left( {\cos 42^\circ  - \sin 48^\circ } \right)\)

b. \(\left( {\tan 52^\circ  + \cot 43^\circ } \right).\left( {\tan 29^\circ  + \cot 61^\circ } \right).\left( {\tan 13^\circ  - \tan 24^\circ } \right)\)

Bài 2. Cho tam giác ABC vuông tại A có \(AB = 6cm, BC = 10cm\), đường cao AH. Gọi E, F là hình chiếu của H lần lượt lên AB, AC.

a. Tính EF

b. Chứng minh rằng : \(AE.AB = AF.AC\)

c. Tính : \(A = {\sin ^2}B + {\sin ^2}C - \tan B.\tan C\)

Bài 3. Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC, vẽ EF vuông góc với BC.

a. Chứng minh rằng : \(AF = BE.\cos C\).

b. Cho \(BC = 20cm; \sin C = 0,6\). Tính \({S_{AEFB}}\)

Lời giải chi tiết

Bài 1. a. Ta có: \(\cos 42^\circ  = \sin 48^\circ \) (vì là hai góc phụ nhau)

\(⇒ \cos42^o - \sin48^o = 0\)

Do đó: \(\left( {\cos 36^\circ  - \sin 36^\circ } \right).\left( {\cos 37^\circ  - \sin 38^\circ } \right).\left( {\cos 42^\circ  - \sin 48^\circ } \right) = 0\)

b. Ta có: \(\tan 29^\circ  = \cot 61^\circ  \)\(\;\Rightarrow \tan 29^\circ  - \cot 61^\circ  = 0\)

Do đó: \(\left( {\tan 52^\circ  + \cot 43^\circ } \right).\left( {\tan 29^\circ  - \cot 61^\circ } \right).\left( {\tan 13^\circ  - \tan 24^\circ } \right) = 0\)

Bài 2.

a. Ta có: \(∆ABC\) vuông tại A:

\(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8\,\left( {cm} \right)\)

Lại có AH là đường cao của tam giác vuông ABC nên:

\(AH.BC = AB.AC\) (định lí 3)

\( \Rightarrow AH = {{AB.AC} \over {BC}} = {{6.8} \over {10}} = 4,8\,\left( {cm} \right)\)

Dễ thấy tứ giác AFHE là hình chữ nhật có ba góc vuông nên \(EF = AH = 4,8 \;(cm)\)

b. Xét tam giác vuông AHB có đường cao HE, ta có:

\(A{H^2} = AE.AB\) (định lí 1)   (1)

Tương tự với tam giác vuông AHC, ta có:

\(A{H^2} = AF.AC\) (2)

Từ (1) và (2) suy ra: \(AE.AB = AF.AC\)

c. Ta có:

\(\eqalign{  & \sin B = {{AC} \over {BC}} \Rightarrow {\sin ^2}B = {{A{C^2}} \over {B{C^2}}}  \cr  & \sin C = {{AB} \over {BC}} \Rightarrow {\sin ^2}C = {{A{B^2}} \over {B{C^2}}}  \cr  & \tan B = {{AC} \over {AB}} \Rightarrow \tan C = {{AB} \over {AC}} \cr} \)

Vậy \(\eqalign{   A &= {\sin ^2}B + {\sin ^2}C - \tan B.\tan C  \cr  &  = {{A{C^2}} \over {B{C^2}}} + {{A{B^2}} \over {B{C^2}}} - {{AC} \over {AB}}.{{AB} \over {AC}} \cr&= {{A{C^2} + A{B^2}} \over {B{C^2}}} - 1 \cr} \)

\(\;\;\;\;\; = {{B{C^2}} \over {B{C^2}}} - 1\) (định lí Pi-ta-go)

\(\;\;\;\;\;=1 – 1 = 0\)

Bài 3.

a. Ta có: ∆BAC đồng dạng ∆EFC (g.g) \( \Rightarrow {{AC} \over {BC}} = {{FC} \over {EC}}\) (1)

Xét ∆AFC và ∆BEC có \(\widehat C\) chung và (1)

Do đó ∆AFC đồng dạng ∆BEC (c.g.c)

\(\eqalign{  &  \Rightarrow {{AF} \over {BE}} = {{AC} \over {BC}} = \cos C  \cr  &  \Rightarrow AF = BE.\cos C\,\left( {dpcm} \right) \cr} \)

b. Ta có: \({S_{AEFB}} = {S_{ABC}} - {S_{EFC}}\)

Ta có: \(\sin C = 0,6 \Rightarrow \widehat C \approx 36^\circ 52'\)

∆ABC vuông tại A nên \(AB = BC.sinC = 20.0,6 = 12\; (cm)\)

Tương tự: \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{20}^2} - {{12}^2}}  = 16\,\left( {cm} \right)\)

Do đó: \({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}12.16 = 96\,\left( {c{m^2}} \right)\)

∆BAC và ∆EFC đồng dạng (cmt), ta có:

\(\eqalign{  & {{{S_{EFC}}} \over {{S_{BAC}}}} = {\left( {{{EC} \over {BC}}} \right)^2} = {\left( {{8 \over {20}}} \right)^2} = {{64} \over {400}}  \cr  &  \Rightarrow {S_{EFC}} = {{{S_{ABC}}.64} \over {400}} = {{96.64} \over {400}} \approx 15,36\,\left( {c{m^2}} \right)  \cr  & \text{Vậy }\,{S_{AEFB}} = 96 - 15,36 = 80,64\,\left( {c{m^2}} \right) \cr} \)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan