 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
                                                        Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
                                                    Đề kiểm tra 15 phút - Đề số 8 - Bài 8 - Chương 2 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 8 - Bài 8 - Chương 2 - Hình học 9
Đề bài
Cho hình bình hành ABCD (\(AB > AD\)). Vẽ đường tròn tâm A bán kính AD, đường tròn (A) cắt AB tại E. Vẽ đường tròn tâm B bán kính BE, đường tròn (B) cắt đường thẳng DE tại F. Chứng minh đường tròn (A; AD) và (B; BE) tiếp xúc với nhau và ba điểm F, B, C thẳng hàng.
Phương pháp giải - Xem chi tiết
+Chứng minh hai đường tròn trên tiếp xúc ngoài tại E
+Chứng minh hai tam giác ADE và EBF cân
+Chứng minh BF và CB cùng song song với BC
+Áp dụng tiên đề Ơ-Clit
Lời giải chi tiết

Ta có: \(AB = AE + EB\; (d = R + R’)\)
\(⇒ (A; AD)\) và \((B; BE)\) tiếp xúc ngoài với nhau tại E.
Ta có ∆ADE cân tại A (\(AD = AE = R\)) \( \Rightarrow {\widehat D_1} = {\widehat E_1}\)
Tương tự ∆EBF cân tại B
\( \Rightarrow \widehat F = {\widehat E_2},\) mà \({\widehat E_1} = {\widehat E_2}\) (đối đỉnh)
\( \Rightarrow {\widehat D_1} = \widehat F.\) Do đó AD // BF. Lại có AD // BC (gt)
Theo tiên đề Ơ-clit : BF và BC phải trùng nhau hay F, B, C thẳng hàng.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Đề kiểm tra 15 phút - Đề số 9 - Bài 8 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 10 - Bài 8 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 7 - Bài 8 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 2 - Hình học 9
>> Xem thêm
Các bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            