Đề kiểm tra 15 phút - Đề số 10 - Bài 8 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 10 - Bài 8 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn tâm K có đường kính BC. Gọi D là trung điểm của KC và I là tâm của đường tròn có đường kính BD.

a. Chứng tỏ hai đường tròn (K) và (I) tiếp xúc trong với nhau.

b. Qua B vẽ đường thẳng (không trùng với BC) cắt (K) và (I) lần lượt tại A và E. Chứng tỏ KA // IE và \({{CA} \over {DE}}\) không đổi.

Phương pháp giải - Xem chi tiết

a. So sánh hiệu hai bán kính và khoảng cách hai tâm

b.

-Chỉ ra 1 cặp góc đồng vị bằng nhau

-Chứng minh DE//AC sau đó áp dụng định lý Ta-Lét

Lời giải chi tiết

a. Ta có: \(IK = KB - IB \;(d = R - R’)\)

\(⇒\) Đường tròn (I) và (K) tiếp xúc trong với nhau.

b. Ta có: \(IB = IE\; (= R’)\) nên ∆BIE cân tại I \( \Rightarrow {\widehat B_1} = {\widehat E_1}\)

Tương tự ∆BKA cân tại K \( \Rightarrow {\widehat B_1} = {\widehat A_1}\)

Do đó: \({\widehat E_1} = {\widehat A_1}\) \(⇒\) AK // IE (cặp góc đồng vị)

Ta có: \(\widehat {BED} = \widehat {BAC} = 90^\circ \) \(⇒\) DE // AC

Theo Định lí Ta-lét, ta có: \({{CA} \over {DE}} = {{BC} \over {BD}}\) không đổi.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài