Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 1 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 1 - Hình học 9

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tính (không dùng bảng số và máy tính): 

\(A = {\sin ^2}15^\circ  + {\sin ^2}75^\circ  + \tan 23^\circ\)\(\;  - \cot 67^\circ - {{\cot 37^\circ } \over {\tan 53^\circ }}\) 

Bài 2. Cho \(∆ABC\) nhọn có \(BC = a, CA = b, AB = c\). Chứng minh rằng:

\({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

LG bài 1

Phương pháp giải:

Sử dụng: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Và \(\sin^2\alpha +\cos^2\alpha =1\)

Lời giải chi tiết:

Ta có:

\(\eqalign{  & {\sin ^2}75^\circ  = {\cos ^2}\left( {90^\circ  - 75^\circ } \right) = {\cos ^2}15^\circ   \cr  & \cot 67^\circ  = \tan \left( {90^\circ  - 67^\circ } \right) = \tan 23^\circ   \cr  & \cot 37^\circ  = \tan \left( {90^\circ  - 37^\circ } \right) = \tan 53^\circ  \cr} \)

Vậy \(A = {\sin ^2}15^\circ  + {\cot ^2}15^\circ  + \tan 23^\circ \)\(\, - \tan 23^\circ  - {{\tan 53^\circ } \over {\tan 53^\circ }} = 1 - 1 = 0\)

LG bài 2

Phương pháp giải:

Sử dụng: Cho tam giác ABC vuông tại A ta có: \(\sin B=\dfrac{AC}{BC};\cos B=\dfrac{AB}{BC}\)

Lời giải chi tiết:

Kẻ đường cao AH, ta có: \(\sin B = {{AH} \over {AB}};\sin C = {{AH} \over {AC}}\)

\(\eqalign{  &  \Rightarrow {{\sin B} \over {\sin C}} = {{AH} \over {AB}}:{{AH} \over {AC}} = {{AC} \over {AB}} = {b \over c}  \cr  &  \Rightarrow {b \over {\sin B}} = {c \over {\sin C}} \cr} \)

Tương tự : \({a \over {\sin A}} = {b \over {\sin B}}\)

Từ đó ta có: \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

 Loigiaihay.com


Bình chọn:
3.3 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí