Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 1 - Hình học 9

Bình chọn:
3.2 trên 13 phiếu

Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 1 - Hình học 9

Đề bài

Bài 1. Tính (không dùng bảng số và máy tính):

\(A = {\sin ^2}15^\circ  + {\sin ^2}75^\circ  + \tan 23^\circ\)\(\;  - \cot 67^\circ - {{\cot 37^\circ } \over {\tan 53^\circ }}\)

Bài 2. Cho \(∆ABC\) nhọn có \(BC = a, CA = b, AB = c\). Chứng minh rằng :

\({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

Lời giải chi tiết

Bài 1. Ta có:

\(\eqalign{  & {\sin ^2}75^\circ  = {\cos ^2}\left( {90^\circ  - 75^\circ } \right) = {\cos ^2}15^\circ   \cr  & \cot 67^\circ  = \tan \left( {90^\circ  - 67^\circ } \right) = \tan 23^\circ   \cr  & \cot 37^\circ  = \tan \left( {90^\circ  - 37^\circ } \right) = \tan 53^\circ  \cr} \)

Vậy \(A = {\sin ^2}15^\circ  + {\cot ^2}15^\circ  + \tan 23^\circ \)\(\, - \tan 23^\circ  - {{\tan 53^\circ } \over {\tan 53^\circ }} = 1 - 1 = 0\)

Bài 2.

Kẻ đường cao AH, ta có: \(\sin B = {{AH} \over {AB}};\sin C = {{AH} \over {AC}}\)

\(\eqalign{  &  \Rightarrow {{\sin B} \over {\sin C}} = {{AH} \over {AB}}:{{AH} \over {AC}} = {{AC} \over {AB}} = {b \over c}  \cr  &  \Rightarrow {b \over {\sin B}} = {c \over {\sin C}} \cr} \)

Tương tự : \({a \over {\sin A}} = {b \over {\sin B}}\)

Từ đó ta có: \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 3. Bảng lượng giác

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com