
Đề bài
Cho tam giác DEF vuông tại D, phân giác của góc E cắt DF tại A. Trên EF lấy điểm B sao cho EB = ED.
a) Chứng minh rằng \(\Delta DEA = \Delta BEA\)
b) Chứng minh rằng \(AB \bot EF\)
Lời giải chi tiết
a)Xét tam giác DEA và BEA có:
ED = EB (gt)
\(\widehat {DEA} = \widehat {BEA}\) (EA là tia phân giác của góc DEB)
EA là cạnh chung.
Do đó: \(\Delta DEA = \Delta BEA(c.g.c)\)
b) Ta có: \(\Delta DEA = \Delta BEA \Rightarrow \widehat {DAE} = \widehat {BAE}\)
Tam giác ADE vuông tại D có: \(\widehat {DEA} + \widehat {DAE} = {90^0}\)
Mà \(\widehat {DEA} = \widehat {AEB}\) (EA là tia phân giác của góc DEB) và \(\widehat {DAE} = \widehat {BAE}\)
Nên \(\widehat {DEA} + \widehat {DAE} = {90^0} \Leftrightarrow \widehat {AEB} + \widehat {BAE} = {90^0}.\)
Mặt khác: \(\widehat {ABF} = \widehat {AEB} + \widehat {BAE}\) (góc ngoài của tam giác ABE)
Do đó: \(\widehat {ABF} = {90^0} \Rightarrow AB \bot EF\)
Loigiaihay.com
Giải bài tập Cho tam giác ABC nhọn (AB < AC), phân giác của góc A cắt BC tại D. Trên AC lấy điểm E sao cho AE = AB.
Giải bài tập Cho góc xAy nhọn có At là tia phân giác. Trên tia At ta lấy điểm D, đường thẳng song song với Ay kẻ từ D cắt Ax tại C.
Giải bài tập Cho tam giác ABC có AB = AC, phân giác của góc A cắt BC tại H.
Giải bài tập Cho tam giác DEF nhọn, kẻ
Giải bài tập Cho tam giác ABC nhọn. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm E sao cho DE = DA.
Giải bài tập Cho tam giác MNP có MN = MP. Gọi E là trung điểm của MN, F là trung điểm của MP. Gọi I là giao điểm của NF và PE. Chứng minh rằng:
Giải bài tập Cho tam giác ABC vuông tại A, kẻ
Giải bài tập Cho tam giác ABC nhọn (AC
Giải bài tập Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
Giải bài tập Ở hình 55 cho biết
Giải bài tập Ở hình 54 cho biết
Giải bài tập Ở hình 53 cho biết
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: