
Đề bài
Cho tam giác MNP có MN = MP. Gọi E là trung điểm của MN, F là trung điểm của MP. Gọi I là giao điểm của NF và PE. Chứng minh rằng:
a) \(\Delta MEP = \Delta MFN\)
b) \(\Delta IEN = \Delta IFP\)
c) MI là phân giác của góc NMP.
d) EF // NP.
Lời giải chi tiết
a)Ta có: \(ME = NE = {{MN} \over 2}\) (F là trung điểm của MN)
\(MF = PF = {{MP} \over 2}\) (F là trung điểm của NP)
Mà MN = MP (giả thiết) nên ME = NE = MF = PF.
Xét tam giác MEP và MFN có:
ME = MF (chứng minh trên)
\(\widehat {EMP}\) là góc chung
MP = MN (giả thiết)
Do đó: \(\Delta MEP = \Delta MFN(c.g.c)\)
b)Ta có: \(\Delta MEP = \Delta MFN\) (chứng minh câu a) \( \Rightarrow \widehat {MEP} = \widehat {MFN};\widehat {MPE} = \widehat {MNF}\)
\(\widehat {MEP} + \widehat {NEP} = \widehat {MFN} + \widehat {NFP}( = {180^0})\)
Mà \(\widehat {MEP} = \widehat {MFN}\) (chứng minh trên) do đó: \(\widehat {NEP} = \widehat {NFP}.\)
Xét tam giác IEN và IFP có:
\(\widehat {IEN} = \widehat {IFP}\) (chứng minh trên)
EN = EP (chứng minh câu a)
\(\widehat {ENI} = \widehat {FPI}(\Delta MEP = \Delta MFN)\)
Do đó: \(\Delta IEN = \Delta IFP(g.c.g)\)
c) Xét tam giác MIN và MIP có:
MI là cạnh chung
MN = MP (giả thiết)
NI = PI \((\Delta IEN = \Delta IFP)\)
Do đó: \(\Delta MIN = \Delta MIP(c.c.c) \Rightarrow \widehat {IMN} = \widehat {IMP}\)
Vậy MI là tia phân giác của góc NMP.
d) Gọi H, K lần lượt là giao điểm của MI với EF, NP.
Xét tam giác MHE và MHF có:
ME = MF
\(\widehat {HME} = \widehat {HMF}\) (chứng minh trên)
MH là cạnh chung.
Do đó: \(\Delta MHE = \Delta MHF(c.g.c) \Rightarrow \widehat {MHE} = \widehat {MHF}\)
Mà \(\widehat {MHE} + \widehat {MHF} = {180^0}\) (kề bù) nên \(\widehat {MHE} + \widehat {MHE} = {180^0}\)
\( \Rightarrow 2\widehat {MHE} = {180^0} \Rightarrow \widehat {MHE} = {90^0} \Rightarrow MH \bot EFhayMK \bot EF\)
Xét tam giác MKN và MKP có:
MN = MP (gt)
\(\widehat {KMN} = \widehat {KMP}(cmt)\)
Mk là cạnh chung.
Do đó: \(\Delta MKN = \Delta MKP(c.g.c) \Rightarrow \widehat {MKN} = \widehat {MKP}\)
Mà \(\widehat {MKN} + \widehat {MKP} = {180^0}\) (kề bù) nên \(\widehat {MKN} + \widehat {MKN} = {180^0}.\)
\( \Rightarrow 2\widehat {MKN} = {180^0} \Rightarrow \widehat {MKN} = {90^0} \Rightarrow MK \bot NP\)
Ta có: \(EF \bot MK;NP \bot MK.\) Vậy EF // NP.
Loigiaihya.com
Giải bài tập Cho tam giác ABC vuông tại A, kẻ
Giải bài tập Cho tam giác ABC nhọn. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm E sao cho DE = DA.
Giải bài tập Cho tam giác DEF nhọn, kẻ
Giải bài tập Cho tam giác ABC có AB = AC, phân giác của góc A cắt BC tại H.
Giải bài tập Cho góc xAy nhọn có At là tia phân giác. Trên tia At ta lấy điểm D, đường thẳng song song với Ay kẻ từ D cắt Ax tại C.
Giải bài tập Cho tam giác ABC nhọn (AB < AC), phân giác của góc A cắt BC tại D. Trên AC lấy điểm E sao cho AE = AB.
Giải bài tập Cho tam giác DEF vuông tại D, phân giác của góc E cắt DF tại A. Trên EF lấy điểm B sao cho EB = ED.
Giải bài tập Cho tam giác ABC nhọn (AC
Giải bài tập Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
Giải bài tập Ở hình 55 cho biết
Giải bài tập Ở hình 54 cho biết
Giải bài tập Ở hình 53 cho biết
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: