TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

  • Chỉ còn
  • 11

    Giờ

  • 27

    Phút

  • 46

    Giây

Xem chi tiết

Bài tập 4 trang 156 Tài liệu dạy – học Toán 7 tập 1


Giải bài tập Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

Đề bài

Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a) Chứng minh rằng AM là tia phân giác của góc A.

b) Kẻ ME vuông góc với AB, MF vuông góc với AC. Chứng minh rằng AE = AF.

Lời giải chi tiết

 

a)Xét tam giác ABM và ACM có:

AB = AC (gt)

BM = CM (M là trung điểm của BC)

AM là cạnh chung.

Do đó: ΔABM=ΔACM(c.c.c)^BAM=^CAMΔABM=ΔACM(c.c.c)ˆBAM=ˆCAM

Vậy AM là tia phân giác của góc BAC.

b) Xét hai tam giác vuông EBM và FCM có:

BM = CM (M là trung điểm của BC)

^EBM=^FCM(doΔABM=ΔACM)ˆEBM=ˆFCM(doΔABM=ΔACM)

Do đó: ΔEBM=ΔFCMΔEBM=ΔFCM  (cạnh huyền - góc nhọn) => BE = CF.

Ta có: AE + BE = AB và AF + CF = AC

Mà AB = AC (giả thiết) và BE = CF (chứng minh trên) nên AE = AF.

Loigiaihay.com


Bình chọn:
4.6 trên 16 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.