Bài 89 trang 111 SGK Toán 8 tập 1

Bình chọn:
3.9 trên 67 phiếu

Giải bài 89 trang 111 SGK Toán 8 tập 1. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Gọi \(D\) là trung điểm của \(AB, E\) là điểm đối xứng với \(M\) qua \(D\).

a) Chứng minh rằng điểm \(E\) đối xứng với điểm \(M\) qua \(AB\).

b) Các tứ giác \(AEMC, AEBM\) là hình gì? Vì sao?

c) Cho \(BC = 4cm\), tính chu vi tứ giác \(AEBM\).

d) Tam giác vuông \(ABC\), có điều kiện gì thì \(AEBM\) là hình vuông?

Phương pháp giải - Xem chi tiết

- Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

- Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.

- Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.

- Hình bình hành có hai đường chéo vuông góc là hình thoi

- Hình thoi có một góc vuông là hình vuông.

Lời giải chi tiết

a) Ta có \(MB = MC\) (vì \(M\) là trung điểm của \(BC\) ),

\(BD = DA\) (vì \(D\) là trung điểm của \(AB\) )

nên \(MD\) là đường trung bình của \(∆ABC\) (dấu hiệu nhận biết đường trung bình của tam giác)

Do đó \(MD // AC\) (tính chất đường trung bình của tam giác)

Do \(AC ⊥ AB\) (gt) nên \(MD ⊥ AB\) 

Ta có \(AB\) là đường trung trực của \(ME\) (do \(AB ⊥ ME\) tại \(D\) và \(DE = DM\)) nên \(E\) đối xứng với \(M\) qua \(AB\).

b) Ta có: \(EM // AC\) (do \(MD // AC\))

\(EM = AC\) (cùng bằng \(2DM\))

Suy ra \(AEMC\) là hình bình hành (dấu hiệu nhận biết hình bình hành)

Tứ giác \(AEBM\) có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành.

Hình bình hành \(AEBM\) có \(AB ⊥ EM\) (chứng minh trên) nên \(AEBM\) là hình thoi (dấu hiệu nhận biết hình thoi)

c) Ta có \(BC = 4 cm \Rightarrow BM = 2 cm\) (do \(M\) là trung điểm \(BC\))

Chu vi hình thoi \(AEBM\) bằng \(4.BM = 4. 2 = 8(cm)\)

d) Cách 1 :

Hình thoi \(AEBM\) là hình vuông \(⇔ AB = EM ⇔ AB = AC\)

Vậy nếu \(ABC\) vuông có thêm điều kiện \(AB = AC\) (tức là tam giác \(ABC\) vuông cân tại \(A\)) thì \(AEBM\) là hình vuông.

Cách 2 :

Hình thoi \(AEBM\) là hình vuông \(⇔AM ⊥ BM\)

\(⇔∆ABC\) có trung tuyến \(AM\) là đường cao

\(⇔∆ABC\) cân tại \(A\) (dấu hiệu nhận biết tam giác cân)

Vậy nếu \(∆ABC\) vuông có thêm điều kiện cân tại \(A\) thì \(AEBM\) là hình vuông.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Ôn tập chương I: Tứ giác

Bài 90 trang 112 SGK Toán 8 tập 1 Bài 90 trang 112 SGK Toán 8 tập 1

Giải bài 90 trang 112 SGK Toán 8 tập 1. Đố: Tìm trục đối xứng và tâm đối xứng của

Xem chi tiết
Bài 88 trang 111 SGK Toán 8 tập 1 Bài 88 trang 111 SGK Toán 8 tập 1

Giải bài 88 trang 111 SGK Toán 8 tập 1. Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD có điều kiện gì thì EFGH là:

Xem chi tiết
Bài 87 trang 111 SGK Toán 8 tập 1 Bài 87 trang 111 SGK Toán 8 tập 1

Giải bài 87 trang 111 SGK Toán 8 tập 1. Sơ đồ ở hình 109 biểu thị quan hệ giữa các tập hợp hình thang, hình bình hành, hình chữ nhật, hình thoi, hình vuông. Dựa vào sơ đồ đó, hãy điền vào chỗ trống:

Xem chi tiết
Lý thuyết nhân đơn thức với đa thức Lý thuyết nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.

Xem chi tiết
Lý thuyết đường trung bình của tam giác, của hình thang Lý thuyết đường trung bình của tam giác, của hình thang

Đường trung bình cuả tam giác là đoạn thằng nối trung điểm hai cạnh của tam giác.

Xem chi tiết
Lý thuyết tính chất đường phân giác của tam giác Lý thuyết tính chất đường phân giác của tam giác

Lý thuyết: Tính chất đường phân giác của tam giác

Xem chi tiết
Bài 45 trang 20 SGK Toán 8 tập 1 Bài 45 trang 20 SGK Toán 8 tập 1

Giải bài 45 trang 20 SGK Toán 8 tập 1. Tìm x, biết:

Xem chi tiết
Bài 22 trang 80 SGK Toán 8 tập 1 Bài 22 trang 80 SGK Toán 8 tập 1

Giải bài 22 trang 80 SGK Toán 8 tập 1. Cho hình 43. Chứng minh rằng AI = IM.

Xem chi tiết

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.