Bài 51 trang 87 SGK Toán 9 tập 2

Bình chọn:
4.3 trên 38 phiếu

Giải bài 51 trang 87 SGK Toán 9 tập 2. Cho I, O lần lượt là tâm đường tròn

Đề bài

Cho \(I, \, O\) lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác \(ABC\) với \(\widehat{A} = 60^0.\) Gọi \(H\) là giao điểm của các đường cao \(BB'\) và \(CC'.\)

Chứng minh các điểm \(B,\, C,\, O,\, H,\, I\) cùng thuộc một đường tròn.

Phương pháp giải - Xem chi tiết

Với đoạn thẳng \(AB\) và góc \(\alpha\, \, (0^0 < \alpha < 90^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{AMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(AB.\)

Lời giải chi tiết

                                

Ta có: \(\widehat{BOC} = 2\widehat{BAC} =  2.60^0= 120^0\)  (góc nội tiếp và góc ở tâm cùng chắn một cung \(BC\)).                (1)

và \(\widehat{BHC} = \widehat{B'HC'}\) (hai góc đối đỉnh)

Mà \(\widehat{B'HC'}= 180^0 - \widehat{A}= 180^0- 60^0 = 120^0.\)

\(\Rightarrow \widehat{BHC} = 120^0.\)           (2)  

Ta có: \(\widehat{BIC}= \widehat{A} + \frac{\widehat{B}+\widehat{C}}{2}\) (Tổng 3 góc trong một tam giác)

\(= 60^0+ \frac{180^{\circ}-60^{\circ}}{2} = 60^0+ 60^0.\) (sử dụng góc ngoài của tam giác)

Do đó \(\widehat{BIC} = 120^0.\)

Từ (1), (2), (3) ta thấy các điểm \(O, \, H, \, I\) cùng nằm trên các cung chứa góc \(120^0\) dựng trên đoạn thẳng \(BC.\) Nói cách khác, năm điểm \(B,\, C,\, O,\, H,\, I\) cùng thuộc một đường tròn.

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan