Bài 47 trang 86 SGK Toán 9 tập 2

Bình chọn:
4.2 trên 41 phiếu

Giải bài 47 trang 86 SGK Toán 9 tập 2. Gọi cung chứa góc

Đề bài

Gọi cung chứa góc \(55^0\) ở bài tập 46 là \(\overparen{AmB}\). Lấy điểm \({M_1}\) nằm bên trong và điểm \({M_2}\) nằm bên ngoài đường tròn chứa cung này sao cho \({M_1},{M_2}\) và cung \(\overparen{AmB}\) nằm cùng về một phía đối với đường thẳng \(AB\). Chứng minh rằng:

a) \(\widehat {A{M_1}B} > 55^0\);

b) \(\widehat {A{M_2}B} < 55^0\). 

Phương pháp giải - Xem chi tiết

Với đoạn thẳng \(AB\) và góc \(\alpha\, \, (0^0 < \alpha < 90^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{AMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(AB.\)

Lời giải chi tiết

a) \({M_1}\) là điểm bất kì nằm trong cung chứa góc \(55^0\) (hình a).

Gọi \(A', \,  B’\) theo thứ tự là giao điểm của \({M_1}A,\)  \({M_1}B\) với cung tròn.

Vì \(\widehat{A{M_1}B}\) là góc có đỉnh nằm trong đường tròn chắn cung \(A'B'\) và \(AB\) nên:  

\(\widehat {A{M_1}B}\) \(=\frac{sđ\overparen{AB}+sđ\overparen{A'B'}}{2} \)\(=55^0 + \) (một số dương).

Vậy \(\widehat {A{M_1}B} > 55^0\) 

                                      

b)  \({M_2}\) là điểm bất kì nằm ngoài đường tròn (h.b), \({M_2}A, \, {M_2}B\) lần lượt cắt đường tròn tại \(A’, \, B’.\)

Vì góc \(\widehat {A{M_2}B}\) là góc có đỉnh nằm bên ngoài đường tròn chắn cung \(A'B'\) và \(AB\) nên:

\(\widehat {A{M_2}B}= \frac{sđ\overparen{AB}-sđ\overparen{A'B'}}{2}=55^0 - \)  (một số dương).

Vậy  \(\widehat {A{M_2}B} < 55^0.\)

                                   

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan