Bài 4 trang 59 SGK Toán 8 tập 2

Bình chọn:
4.1 trên 169 phiếu

Giải bài 4 trang 59 SGK Toán 8 tập 2. Cho biết AB'/AB= AC'/AC

Đề bài

Cho biết \(\frac{AB'}{AB}\) = \(\frac{AC'}{AC}\) (h.6)

Chứng minh rằng: 

a) \(\frac{AB'}{B'B}\) = \(\frac{AC}{C'C}\)'

b) \(\frac{BB'}{AB}\)  =  \(\frac{CC'}{AC}\).

Phương pháp giải - Xem chi tiết

- Áp dụng định lí TaLet và tính chất dãy tỉ số bằng nhau.

Lời giải chi tiết

a) Ta có: 

\(\frac{AB'}{AB}\) = \(\frac{AC'}{AC}\) (gt) => \(\frac{AC}{AC'}\) = \(\frac{AB}{AB'}\)

=>  \(\frac{AC}{AC'}\) - 1 =  \(\frac{AC-AC'}{AC'}\) = \(\frac{AB-AB'}{AB'}\) 

=> \(\frac{CC'}{AC'}\) =  \(\frac{B'B}{AB'}\) => \(\frac{AB'}{BB'}\) = \(\frac{AC'}{CC'}\)

b) Vì \(\frac{AB'}{AB}\) = \(\frac{AC'}{AC}\) mà AB' = AB - B'B, AC' = AC - C'C (gt)

\(\frac{AB-BB'}{AB}\) = \(\frac{AC -CC'}{AC}\) => 1 - \(\frac{B'B}{AB}\) = 1 -  \(\frac{C'B}{AC}\)

=> \(\frac{B'B}{AB}\) = \(\frac{C'B}{AC}\)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan