Bài 31 trang 59 SGK Toán 9 tập 1

Bình chọn:
4.8 trên 28 phiếu

Giải bài 31 trang 59 SGK Toán 9 tập 1. Vẽ đồ thị của hàm số y = x + 1;

Đề bài

a) Vẽ đồ thị của hàm số :

\(y = x + 1;\,\,\,y = \dfrac{1}{\sqrt 3 }x + \sqrt 3 ;\,\,\,y = \sqrt 3 x - \sqrt 3\)

b) Gọi  \(\alpha ,\,\,\beta ,\,\,\,\gamma \)  lần lượt là các góc tạo bởi các đường thẳng trên và trục Ox.

Chứng minh rằng \(tg\alpha  = 1,\,\,\,tg\beta  = \dfrac{1}{\sqrt 3 };\,\,\,tg\gamma  = \sqrt 3\)

Tính số đo các góc α, β, ɣ.

Phương pháp giải - Xem chi tiết

a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:

+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\) 

+) Cắt trục tung tại điểm \(B(0;b).\)

Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số  \(y=ax+b \, \, (a\neq 0).\)

b) Góc tạo bởi đường thẳng \(y=a x+b \, \ (a \neq 0)\) là góc \(\alpha \) ta có: \(tan \alpha = a.\)

+) Với \(a<0\), góc \(\alpha\) là góc tù.

+) Với \(a>0\), góc \(\alpha\) là góc nhọn.

Hoặc sử dụng công thức lượng giác trong tam giác vuông:

      \(\Delta{ABC}\) vuông tại \(A\) khi đó: \(tan B = \dfrac{AC}{AB} \)

Lời giải chi tiết

a) 

+ \(y = x + 1\)

   Cho \(x=0 \Rightarrow y=0+1=1 \Rightarrow A(0; 1)\)

   Cho \(x=-1 \Rightarrow y=-1+1=0 \Rightarrow B(-1; 0)\)

Đồ thị hàm số \(y = x + 1\) là đường thẳng đi qua hai điểm \(A(0; 1)\) và \(B(-1; 0)\)

+ \(y = \dfrac{1}{\sqrt 3 }x + \sqrt 3\)

   Cho \(x=-3 \Rightarrow y = \dfrac{1}{\sqrt 3 }.(-3) + \sqrt 3=0  \Rightarrow D(-3; 0)\)

   Cho \(x=0 \Rightarrow y = \dfrac{1}{\sqrt 3 }.0 + \sqrt 3 =\sqrt 3 \Rightarrow C(0; \sqrt 3)\)

Đồ thị hàm \(y = \dfrac{1}{\sqrt 3 }x + \sqrt 3\) là đường thẳng đi qua hai điểm \(D(-3; 0)\) và \(C(0; \sqrt 3)\)

+ \(y = \sqrt 3 x - \sqrt 3\)

   Cho \(x=0 \Rightarrow y = \sqrt 3 .0 - \sqrt 3=\sqrt 3 \Rightarrow E(0; \sqrt 3)\)

   Cho \(x=1 \Rightarrow y = \sqrt 3 .1 - \sqrt 3=0 \Rightarrow F(1; 0)\)

Đồ thị hàm số \(y = \sqrt 3 x - \sqrt 3\) là đường thẳng đi qua hai điểm \(E(0; \sqrt 3)\) và \(F(1; 0)\)

b)

Cách 1:

+ Đường thẳng \(y = x + 1\) có hệ số góc là \(1\)

Suy ra \(tan \alpha = 1 \Leftrightarrow \alpha = 45^o\)

+ Đường thẳng \(y = \dfrac{1}{\sqrt 3 }x + \sqrt 3\) có hệ số góc là \(\dfrac{1}{\sqrt 3 }\)

Suy ra \(tan \beta = \dfrac{1}{\sqrt 3 } \Leftrightarrow \beta = 30^o\)

+ Đường thẳng \(y = \sqrt 3 x - \sqrt 3\) có hệ số góc là \(\sqrt 3\)

Suy ra \(tan \gamma = \sqrt 3 \Leftrightarrow \alpha = 60^o\)

Cách 2:

+ Quan sát hình vẽ, dễ thấy:

\(OA=OB=OF=1\), \(OE=OC=\sqrt 3\),  \(OD = 3\).

+ Xét \(\Delta{OAB}\) vuông tại \(O\)

               \(\Rightarrow \tan \alpha =tan\ B =\dfrac{OA}{OB}=\dfrac{1}{1}=1\)

               \(\Rightarrow \alpha = 45^o\)  

Thực hiện bấm máy tính:

+ Xét \(\Delta{ODC}\) vuông tại \(O\)

                \(\Rightarrow \tan \beta =tan\ D =\dfrac{OC}{OD}=\dfrac{\sqrt 3}{3}\)

                \(\Rightarrow \beta = 30^o\)

+ Xét \(\Delta{OEF}\) vuông tại \(O\)

                \(\Rightarrow \tan \beta =tan \widehat{OFE} =\dfrac{OE}{OF}=\dfrac{\sqrt 3}{1}=\sqrt 3\)

                \(\Rightarrow \gamma  = 60^o\)

Lại có \(\widehat{OFE}\) và \(\gamma\) là hai góc đối đỉnh \(\Rightarrow \widehat{OFE}=\gamma\).

Vậy \(\gamma=60^o\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan