Bài 3 trang 115 SGK Toán 8 tập 1>
Cho hình thoi ABCD
Đề bài
Cho hình thoi \(ABCD\) có \(\widehat A = {60^0}\). Gọi \(E, F, G, H\) lần lượt là trung điểm của các cạnh \(AB, BC, CD, DA\). Chứng minh rằng đa giác \(EBFGDH\) là lục giác đều.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng:
- Hình thoi có tất cả các cạnh bằng nhau,
- Lục giác đều là hình có sáu cạnh bằng nhau và sáu góc bằng nhau.
Lời giải chi tiết
Vì \(ABCD\) là hình thoi (giả thiết) và \(\widehat A = {60^0}\) (giả thiết)
Do đó \(AB = BC = CD = DA\); \(AB//DC;\,BC//AD\).
Lại có \(E,F,G,H\) lần lượt là trung điểm của \(AB,BC,CD,DA\) nên \(AE = EB = BF = FC = CG = GD\)\(\, = DH = HA\)
Vì \(AD//BC\) nên \(\widehat A + \widehat {ABC} = {180^0}\) (\(2\) góc trong cùng phía bù nhau)
\( \Rightarrow \widehat {ABC} = {180^0} - \widehat A = {180^0} - {60^0} \)\(= {120^0}\)
\( \Rightarrow \widehat {ABC} = \widehat {ADC} = {120^0}\) (tính chất hình thoi)
\(\Delta EAH\) có \(AE=AH\) (chứng minh trên) và \(\widehat A=60^0\) nên là tam giác đều (vì tam giác cân có một góc \(60^0\) là tam giác đều)
\( \Rightarrow \widehat {AEH} = \widehat {AHE} = {60^0}\) và \(AE=EH=AH\) (tính chất tam giác đều)
\(\left\{ \begin{array}{l}
\widehat {AEH} + \widehat {HEB} = {180^0}\\
\widehat {AHE} + \widehat {EHD} = {180^0}
\end{array} \right.\) (hai góc kề bù)
\( \Rightarrow \widehat {HEB} = \widehat {EH{\rm{D}}} = {180^0} - {60^0} = {120^0}\)
Tương tự:
\(\Delta CFG\) có \(CF=CG\) (chứng minh trên) và \(\widehat C=\widehat A =60^0\) (do ABCD là hình thoi) nên là \(\Delta CFG\) tam giác đều (vì tam giác cân có một góc \(60^0\) là tam giác đều)
\( \Rightarrow \widehat {CFG} = \widehat {CGF} = {60^0}\) và \(CF=FG=CG\) (tính chất tam giác đều)
\(\left\{ \begin{array}{l}
\widehat {CFG} + \widehat {BFG} = {180^0}\\
\widehat {CGF} + \widehat {FGD} = {180^0}
\end{array} \right.\) (hai góc kề bù)
\( \Rightarrow \widehat {BFG} = \widehat {FGD} = {180^0} - {60^0} = {120^0}\)
Từ đó ta suy ra: \( EB = BF = GD=HD\)\(\, = EH= FG\)
\(\widehat {ABC} = \widehat {ADC} \)\(=\widehat {HEB} = \widehat {EH{\rm{D}}}\)\(=\widehat {BFG} =\widehat{F GD} = {120^0}\)
Vậy đa giác \(EBFGDH\) có tất cả các góc bằng nhau, tất cả các cạnh bằng nhau ( bằng nửa cạnh hình thoi)
Nên \(EBFGDH\) là một lục giác đều (dấu hiệu nhận biết lục giác đều)
Loigiaihay.com
- Bài 4 trang 115 SGK Toán 8 tập 1
- Bài 5 trang 115 SGK Toán 8 tập 1
- Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 2 - Hình học 8
- Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Hình học 8
- Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 2 - Hình học 8
>> Xem thêm