Bài 21 trang 95 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC nội tiếp đường tròn O, đường kính AD. Kẻ đường cao AH của tam giác ABC.

Đề bài

Cho tam giác ABC nội tiếp đường tròn O, đường kính AD. Kẻ đường cao AH của tam giác ABC.

a) Chứng minh tam giác BAH đồng dạng với tam giác DAC.

b) Gọi I là điểm chính giữa cung nhỏ BC. Chứng minh AI là tia phân giác của góc HAD.

c) Tia AH cắt đường tròn O tại K. Chứng minh rằng B, C, D, K là bốn đỉnh của một hình thang cân.

Phương pháp giải - Xem chi tiết

a) Chứng minh tam giác BAH đồng dạng với tam giác DAC theo trường hợp g-g.

b) +) Chứng minh \(OI \bot BC \Rightarrow AH//IO\).

    +) Chứng minh \(\widehat {HAI}\) và \(\widehat {OAI}\) cùng bằng \(\widehat {OIA}\).

c)  +) Chứng minh BC và DK cùng vuông góc với AK \( \Rightarrow BC//DK\).

    +) Chứng minh , từ đó suy ra \(\widehat {BCD} = \widehat {KBC}\).

Lời giải chi tiết

 

a) Ta có: \(\widehat {ACD} = {90^0}\) (góc nội tiếp chắn nửa đường tròn).

Xét \(\Delta BAH\) và \(\Delta DAC\) có:

\(\widehat {AHB} = \widehat {ACD} = {90^0};\)

\(\widehat {ABH} = \widehat {ADC}\) (hai góc nội tiếp cùng chắn cung AC)

 \( \Rightarrow \Delta BAH \sim \Delta DAC\,\,\left( {g.g} \right)\)

b) Vì I là điểm chính giữa cung BC  (hai cung bằng nhau căng hai dây bằng nhau).

\( \Rightarrow I\) thuộc trung trực của BC.

Lại có \(OB = OC = R \Rightarrow O\) thuộc trung trực của BC.

\( \Rightarrow IO\) là trung trực của BC \( \Rightarrow IO \bot BC\).

Mà \(AH \bot BC\,\,\left( {gt} \right) \Rightarrow AH//IO\).

\( \Rightarrow \widehat {HAI} = \widehat {AIO}\)(1) (hai góc so le trong bằng nhau).

Xét tam giác OAI có \(OA = OI = R \Rightarrow \Delta OAI\) cân tại O \( \Rightarrow \widehat {OAI} = \widehat {AIO}\)(hai góc ở đáy) (2).

Từ (1) và (2) \( \Rightarrow \widehat {HAI} = \widehat {OAI} \Rightarrow AI\) là phân giác của \(\widehat {HAD}\).

c) Ta có \(\widehat {AKD} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow AK \bot KD\).

Mà \(AK \bot BC \Rightarrow KD//BC \Rightarrow BCDK\) là hình thang.

Do \(KD//BC \Rightarrow cung\,BK = cung\,CD\) (hai cung nằm giữa hai dây song song thì bằng nhau).

 \( \Rightarrow cung\,BK + cung\,KD = cung\,CD + cung\,KD\)

\(\Rightarrow cung\,BD = cung\,CK\)

\( \Rightarrow \widehat {BCD} = \widehat {KBC}\)(trong một đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau).

Vậy BCDK là hình thang cân (Hình thang có 2 góc kề một đáy bằng nhau).

 Loigiaihay.com

Các bài liên quan: - Bài tập - Chủ đề 2 : Góc chắn cung

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu