Bài 11 trang 94 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Từ điểm P ở ngoài đường tròn (O), vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Vẽ dây cung

Đề bài

Từ điểm P ở ngoài đường tròn (O), vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Vẽ dây cung BC // PA. Gọi E là giao điểm thứ hai của PC với đường tròn (O) và F là giao điểm của BE và PA.

a) Chứng minh các cặp tam giác đồng dạng PFB và EFP, AFE và BFA.

b) Chứng minh PF = FA

Phương pháp giải - Xem chi tiết

a) Chứng minh các cặp tam giác đồng dạng theo trường hợp g-g.

b) Từ các cặp tam giác đồng dạng ở câu a), suy ra các tỉ số đồng dạng chứa cạnh PF và FA.

Lời giải chi tiết

 

a) +) Ta có \(\widehat {FPE} = \widehat {ECB}\) (so le trong bằng nhau do AP // BC);

Lại có: \(\widehat {EBC} = \widehat {FBP}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BE)

\( \Rightarrow \widehat {FPE} = \widehat {FBP}\).

Xét \(\Delta PFB\) và \(\Delta EFP\) có:

\(\widehat {BFP}\) chung;

\(\widehat {FPE} = \widehat {FBP}\,\,\left( {cmt} \right);\)

 \( \Rightarrow \Delta PFB \sim \Delta EFP\,\,\left( {g.g} \right)\)

+) Xét \(\Delta AFE\) và \(\Delta BFA\) có:

\(\widehat {AFB}\) chung;

\(\widehat {EAF} = \widehat {ABF}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AE)

 \( \Rightarrow \Delta AFE \sim \Delta BFA\,\,\left( {g.g} \right)\)

b)  \(\Delta PFB \sim \Delta EFP\,\,\left( {cmt} \right)\)

\(\Rightarrow \dfrac{{PF}}{{EF}} = \dfrac{{BF}}{{PF}} \Rightarrow P{F^2} = EF.BF\) (1)

\(\Delta AFE \sim \Delta BFA\,\,\left( {cmt} \right) \)

\(\Rightarrow \dfrac{{FA}}{{BF}} = \dfrac{{EF}}{{FA}} \Rightarrow F{A^2} = EF.BF\)  (2)

Từ (1) và (2) \( \Rightarrow P{F^2} = F{A^2} \Rightarrow PF = FA\) (đpcm).

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com