 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
                                                        Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
                                                    Trả lời câu hỏi Bài 5 trang 111 SGK Toán 9 Tập 1 >
Hãy chứng minh cách dựng trên là đúng.
Đề bài
Hãy chứng minh cách dựng trên là đúng.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng: Đường thẳng đi qua một điểm thuộc đường tròn và vuông góc với bán kính đi qua điểm đó là tiếp tuyến của đường tròn.
Lời giải chi tiết
 
Ta có: MA = MO = MB ( cùng bằng bán kính đường tròn tâm M, bán kính MO)
\(MA{\rm{ }} = {\rm{ }}MB \Rightarrow \Delta MAB\) cân tại \(M \Rightarrow \widehat {BAO} = \widehat {ABM}\)
\(MO = MB \Rightarrow \Delta MOB\) cân tại \(M \Rightarrow \widehat {BOA}{\rm{ }} = \widehat {MBO}\)
\( \Rightarrow \widehat {BAO} + \widehat {BOA} = \widehat {ABM}{\rm{ }} + \widehat {MBO}{\rm{ }} = \widehat {ABO}{\rm{ }}\left( 1 \right)\)
Mặt khác ta lại có: \(\widehat {BAO} + \widehat {BOA} + \widehat {ABO} = {180^o}\,\,\,\,\left( 2 \right)\) (tổng 3 góc trong tam giác)
Từ (1) và (2) \( \Rightarrow \widehat {ABO} =180^0:2= {90^o}\)
Suy ra \(AB\bot BO\) tại \(B\), mà \(B\in (O)\)
Do đó AB là tiếp tuyến của (O)
Chứng minh tương tự,
Ta có: MA = MO = MC ( cùng bằng bán kính đường tròn tâm M, bán kính MO)
\(MA{\rm{ }} = {\rm{ }}MC \Rightarrow \Delta MAC\) cân tại \(M \Rightarrow \widehat {CAO} = \widehat {ACM}\)
\(MO = MC \Rightarrow \Delta MOC\) cân tại \(M \Rightarrow \widehat {COA}{\rm{ }} = \widehat {MCO}\)
\( \Rightarrow \widehat {CAO} + \widehat {COA} = \widehat {ACM}{\rm{ }} + \widehat {MCO}{\rm{ }} = \widehat {ACO}{\rm{ }}\left( 3 \right)\)
Mặt khác ta lại có: \(\widehat {CAO} + \widehat {COA} + \widehat {ACO} = {180^o}\,\,\,\,\left( 4 \right)\) (tổng 3 góc trong tam giác)
Từ (3) và (4) \( \Rightarrow \widehat {ACO} =180^0:2= {90^o}\)
Suy ra \(AC\bot CO\) tại \(C\), mà \(C\in (O)\)
Do đó AC là tiếp tuyến của (O)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻCác bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            