Đề kiểm tra 15 phút - Đề số 3 - Bài 5 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 5 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn tâm O, đường kính AB. Kẻ tiếp tuyến tại B với đường tròn (O), trên tiếp tuyến lấy P. Qua A kẻ đường thẳng song song với OP cắt (O) tại Q. Chứng minh PQ là tiếp tuyến của đường tròn (O).

Phương pháp giải - Xem chi tiết

-Dựa vào tính chất của hai đường thẳng song song chỉ ra góc QOP bằng góc BOP

-Từ đó chứng minh được tam giác OPQ bằng tam giác OPB

=>PQ vuông góc với OQ

Lời giải chi tiết

Ta có: AQ // OP (gt)

\(\left\{ {\matrix{   {{{\widehat A}_1} = {{\widehat O}_1}\,\left( \text{cặp góc đồng vị} \right)}  \cr   {{{\widehat Q}_1} = {{\widehat O}_2}\,\left( \text{cặp góc so le trong} \right)}  \cr  } } \right.\)

mà \({\widehat A_1} = {\widehat Q_1}\) (∆AOQ cân) \( \Rightarrow {\widehat O_1} = {\widehat O_2}\)

Xét \(∆PQO\) và \(∆PBO\) có:

OP chung

\({\widehat O_1} = {\widehat O_2}\) (cmt)

\(OQ = OB (=R)\)

Vậy \(∆PQO = ∆PBO\) (c.g.c) \( \Rightarrow \widehat {PQO} = \widehat {PBO} = 90^o\)

Hay \(PQ ⊥ OQ\), chứng tỏ PQ là tiếp tuyến của (O).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài