Đề kiểm tra 15 phút - Đề số 3 - Bài 5 - Chương 2 - Hình học 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 5 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn tâm O, đường kính AB. Kẻ tiếp tuyến tại B với đường tròn (O), trên tiếp tuyến lấy P. Qua A kẻ đường thẳng song song với OP cắt (O) tại Q. Chứng minh PQ là tiếp tuyến của đường tròn (O).

Lời giải chi tiết

Ta có: AQ // OP (gt)

\(\left\{ {\matrix{   {{{\widehat A}_1} = {{\widehat O}_1}\,\left( \text{cặp góc đồng vị} \right)}  \cr   {{{\widehat Q}_1} = {{\widehat O}_2}\,\left( \text{cặp góc so le trong} \right)}  \cr  } } \right.\)

mà \({\widehat A_1} = {\widehat Q_1}\) (∆AOQ cân) \( \Rightarrow {\widehat O_1} = {\widehat O_2}\)

Xét \(∆PQO\) và \(∆PBO\) có:

OP chung

\({\widehat O_1} = {\widehat O_2}\) (cmt)

\(OQ = OB (=R)\)

Vậy \(∆PQO = ∆PBO\) (c.g.c) \( \Rightarrow \widehat {PQO} = \widehat {PBO} = 90^o\)

Hay \(PQ ⊥ OQ\), chứng tỏ PQ là tiếp tuyến của (O).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay