
Đề bài
Cho đường tròn \((O)\), dây \(AB\) khác đường kính. Qua \(O\) kẻ đường vuông góc với \(AB\), cắt tiếp tuyến tại \(A\) của đường tròn ở điểm \(C\).
a) Chứng minh rằng \(CB\) là tiếp tuyến của đường tròn.
b) Cho bán kính của đường tròn bằng \(15cm,\ AB=24cm\). Tính độ dài \(OC\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Dùng dấu hiệu nhận biết tiếp tuyến: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn.
Sử dụng tính chất:
+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
+) Nếu một đường thẳng là tiếp tuyến của đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm đó.
b) Sử dụng định lí Pytago: \(\Delta ABC\) vuông tại \(A\), khi đó: \(BC^2=AC^2+AB^2\).
Sử dụng hệ thức lượng trong tam giác vuông: \(\Delta ABC\), vuông tại \(A\), \(AH \bot BC\), khi đó: \(AB^2=BH.BC\).
Lời giải chi tiết
a) Gọi \(H\) là giao điểm của \(OC\) và \(AB\).
Xét đường tròn (O) có \(OH\perp AB\) tại H mà OH là 1 phần đường kính và AB là dây của đường tròn nên \(HA=HB=\dfrac{AB}2\) (Định lý 2 - trang 103).
Suy ra \(OC\) là đường trung trực của \(AB\), do đó \(CB=CA\) (tính chất)
Xét \(\Delta CBO\) và \(\Delta CAO\) có:
\(CO\) chung
\(CA=CB\) (chứng minh trên)
\(OB=OA=R\)
Suy ra \(\Delta CBO=\Delta CAO\) (c.c.c)
\(\Rightarrow \widehat{CBO}=\widehat{CAO}\)( 2 góc tương ứng) (1)
Vì \(AC\) là tiếp tuyến của đường tròn \((O)\) nên:
\(AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\) (2)
Từ (1) và (2) suy ra \(\widehat{CBO}=90^{\circ}\).
Tức là \(CB\) vuông góc với \(OB\), mà \(OB\) là bán kính của \((O)\).
Vậy \(CB\) là tiếp tuyến của đường tròn \((O)\).
b) Ta có: \(OA=OB=R=15 cm;\)
\(\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12 cm\).
Xét tam giác \(HOA\) vuông tại \(H\), áp dụng định lí Pytago, ta có:
\(OA^2=OH^2+AH^2\)
\(\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\)
\(\Rightarrow OH=\sqrt{81}=9(cm)\)
Xét tam giác \(BOC\) vuông tại \(B\), áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25(cm).\)
Cho đường tròn tâm O có bán kính OA=R, dây BC vuông góc với OA tại trung điểm M của OA.
Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 5 - Chương 2 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 5 - Chương 2 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 5 - Chương 2 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 5 - Chương 2 - Hình học 9
Tìm chiều quay của đường tròn tâm A và đường tròn tâm C
Cho đường thẳng d, điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d.
Chứng minh rằng AC là tiếp tuyến của đường tròn.
Giải Trả lời câu hỏi Bài 5 trang 111 SGK Toán 9 Tập 1. Hãy chứng minh cách dựng trên là đúng.
Giải Trả lời câu hỏi Bài 5 trang 110 SGK Toán 9 Tập 1. Cho tam giác ABC, đường cao AH.
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: