Đề kiểm tra 15 phút - Đề số 2 - Bài 5 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 5 - Chương 2 - Hình học 9

Đề bài

Trên tiếp tuyến của đường tròn (O; R) tại A, lấy điểm P sao cho \(AP = R\sqrt 3 \)

a. Tính các cạnh và các góc của ∆PAO.

b. Kéo dài đường cao AH của ∆PAO cắt đường tròn (O) tại B. Chứng tỏ PB là tiếp tuyến đường tròn (O).

Phương pháp giải - Xem chi tiết

a. Sử dụng:

+Tiếp tuyến của đường tròn vuông góc với bán kính

+Định lý Py-ta-go

+Nửa tam giác đều có 1 góc bằng 30 độ, 1 góc bằng 60 độ

b.Sử dụng:

+Trong tam giác cân đường cao đồng thời là đường phân giác

+Hai tam giác bằng nhau

Lời giải chi tiết

a. Ta có: AP là tiếp tuyến của đường tròn (O; R) nên \(AP ⊥ OA.\)

Xét tam giác vuông PAO ta có:

\(OP = \sqrt {O{A^2} + P{A^2}}  \)\(\;= \sqrt {{R^2} + {{\left( {R\sqrt 3 } \right)}^2}}  = 2R.\)

Dễ thấy \(∆PAO\) là nửa tam giác đều nên :

\(\widehat P = 30^\circ \) và \(\widehat O = 60^\circ \)

b. Ta có: ∆BOA cân tại O (OA = OB = R) có đường cao OH đồng thời là đường phân giác \( \Rightarrow {\widehat O_1} = {\widehat O_2}\)

Xét \(∆PBO\) và \(∆PAO\) có:

PO cạnh chung

\({\widehat O_1} = {\widehat O_2}\) (cmt)

\(OB = OA (=R)\)

Vậy \(∆PBO = ∆PAO\) (c.g.c) \( \Rightarrow \widehat {PBO} = \widehat {PAO} = 90^\circ \)

Hay PB là tiếp tuyến của (O)

 Loigiaihay.com


Bình chọn:
3 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài