 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
                                                        Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
                                                    Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Hình học 9
Đề bài
Từ điểm A ở ngoài đường tròn (O; R), vẽ tiếp tuyến AB(B là tiếp điểm). Lấy C trên đường tròn sao cho \(AC = AB.\)
a. Chứng minh AC là tiếp tuyến của đường tròn (O)
b. Lấy D thuộc AC. Đường thẳng qua C vuông góc với OD tại I cắt (O) tại E (E khác C). Chứng minh rằng DE là tiếp tuyến của đường tròn (O; R)
Phương pháp giải - Xem chi tiết
a. Chỉ ra hai tam giác bằng nhau từ đó suy ra góc ACO vuông
b.Sử dung:
+Trong một đường tròn đường kính vuông góc với dây cung thì vuông góc với dây ấy
+Tính chất đối xứng trục chỉ ra góc DEO bằng 90 độ
Lời giải chi tiết

a. Nối O với A. Xét \(∆ACO\) và \(∆ABO\) có:
OA chung
\(OC = OB (=R)\)
\(AC = AB\) (gt)
Vậy \(∆ACO = ∆ABO\) (c.c.c)
\( \Rightarrow \widehat {ACO} = \widehat {ABO} = 90^\circ \)
Chứng tỏ AC là tiếp tuyến của (O)
b. Ta có: \(CE ⊥ DO ⇒ I\) là trung điểm của CE (định lí đường kính dây cung).
Khi đó DO là đường trung trực của đoạn thẳng EC. Do đó \(DC = DE.\)
Theo tính chất của phép đối xứng trục, ta có: \(\widehat {DEO} = \widehat {DCO} = 90^\circ ,\) chứng tỏ DE là tiếp tuyến của (O).
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻCác bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            