Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Hình học 9

Đề bài

Từ điểm A ở ngoài đường tròn (O; R), vẽ tiếp tuyến AB(B là tiếp điểm). Lấy C trên đường tròn sao cho \(AC = AB.\)

a. Chứng minh AC là tiếp tuyến của đường tròn (O)

b. Lấy D thuộc AC. Đường thẳng qua C vuông góc với OD tại I cắt (O) tại E (E khác C). Chứng minh rằng DE là tiếp tuyến của đường tròn (O; R)

Phương pháp giải - Xem chi tiết

a. Chỉ ra hai tam giác bằng nhau từ đó suy ra góc ACO vuông

b.Sử dung:

+Trong một đường tròn đường kính vuông góc với dây cung thì vuông góc với dây ấy

+Tính chất đối xứng trục chỉ ra góc DEO bằng 90 độ

Lời giải chi tiết

a. Nối O với A. Xét \(∆ACO\) và \(∆ABO\) có:

OA chung

\(OC = OB (=R)\)

\(AC = AB\) (gt)

Vậy \(∆ACO = ∆ABO\) (c.c.c)

\( \Rightarrow \widehat {ACO} = \widehat {ABO} = 90^\circ \)

Chứng tỏ AC là tiếp tuyến của (O)

b. Ta có: \(CE ⊥ DO ⇒ I\) là trung điểm của CE (định lí đường kính dây cung).

Khi đó DO là đường trung trực của đoạn thẳng EC. Do đó \(DC = DE.\)

Theo tính chất của phép đối xứng trục, ta có: \(\widehat {DEO} = \widehat {DCO} = 90^\circ ,\) chứng tỏ DE là tiếp tuyến của (O).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài