Trả lời câu hỏi 1 Bài 3 trang 41 SGK Toán 8 Tập 2


a) Hãy cho biết vế trái, vế phải của bất phương trình

Đề bài

a) Hãy cho biết vế trái, vế phải của bất phương trình \({x^2} \leqslant 6x - 5\)      (1)

b) Chứng tỏ các số \(3; 4\) và \(5\) đều là nghiệm, còn số \(6\) không phải là nghiệm của bất phương trình vừa nêu.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Bất phương trình ẩn \(x \) là hệ thức \(A(x) > B(x)\) hoặc \(A(x) < B(x)\) hoặc \(A(x) ≥ B(x)\) hoặc \(A(x) ≤ B(x)\).

Trong đó: \(A(x)\) gọi là vế trái; \(B(x)\) gọi là vế phải của bất phương trình.

Nghiệm của bất phương trình là giá tri của ẩn thay vào bất phương trình ta được một khẳng định đúng.

Lời giải chi tiết

a) Vế trái của bất phương trình là: \({x^2}\). Vế phải của bất phương trình là: \(6x -5\)

b) Thay  x = 3 vào bất phương trình (1) ta được:

\({3^2} \leqslant 6.3 - 5 \Rightarrow 9 \leqslant 13\) là khẳng định đúng nên \(x = 3\) là nghiệm của bất phương trình (1).

Thay \(x = 4\) vào bất phương trình (1) ta được:

\({4^2} \leqslant 6.4 - 5 \Rightarrow 16 \leqslant 19\) là khẳng định đúng nên \(x = 4\) là nghiệm của bất phương trình (1).

Thay \(x = 5\) vào bất phương trình (1) ta được:

\({5^2} \leqslant 6.5 - 5 \Rightarrow 25 \leqslant 25\) là khẳng định đúng nên \(x = 5\) là nghiệm của bất phương trình (1).

Thay \(x = 6\) vào bất phương trình (1) ta được:

\({6^2} \leqslant 6.6 - 5 \Rightarrow 36 \leqslant 31\) là khẳng định sai nên \(x = 6\) không là nghiệm của bất phương trình (1).

Loigiaihay.com


Bình chọn:
4.7 trên 31 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí