Lý thuyết góc nội tiếp
1. Định nghĩa Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh cắt đường tròn đó.
1. Các kiến thức cần nhớ
Định nghĩa góc nội tiếp
- Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.
- Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn.
Ví dụ: Trên hình 11, góc ^ACB là góc nội tiếp chắn cung AB
Định lý
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Ví dụ: Trên hình 1, số đo góc ^ACB bằng nửa số đo cung nhỏ AB .
Hệ quả
Trong một đường tròn:
a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
c) Góc nội tiếp (nhỏ hơn hoặc bằng 90∘) có số đo bằng nửa số đo góc ở tâm cùng chắn một cung.
d) Góc nội tiếp chắn nửa đường tròn là góc vuông.
2. Các dạng toán thường gặp
Dạng 1: Chứng minh các tam giác đồng dạng, hệ thức về cạnh, hai góc bằng nhau, các đoạn thẳng bằng nhau
Phương pháp:
Ta thường sử dụng hệ quả
Trong một đường tròn:
a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
c) Góc nội tiếp (nhỏ hơn hoặc bằng 90∘) có số đo bằng nửa số đo góc ở tâm cùng chắn một cung.
d) Góc nội tiếp chắn nửa đường tròn là góc vuông.
Dạng 2: Chứng minh hai đường thẳng vuông góc, song song. Tính độ dài, diện tích
Phương pháp:
Ta sử dụng hệ quả để suy ra các góc bằng nhau từ đó chứng minh theo yêu cầu bài toán.




- Trả lời câu hỏi 1 Bài 3 trang 73 Toán 9 Tập 2
- Trả lời câu hỏi 2 Bài 3 trang 73 SGK toán 9 tập 2
- Trả lời câu hỏi Bài 3 trang 75 Toán 9 Tập 2
- Bài 15 trang 75 SGK Toán 9 tập 2
- Bài 16 trang 75 SGK Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com
>> Chi tiết khoá học xem: TẠI ĐÂY
Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục