Bài 26 trang 76 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 57 phiếu

Giải bài 26 trang 76 SGK Toán 9 tập 2. Cho AB, BC, CA là ba dây của đường tròn (O).

Đề bài

Cho \(AB, BC, CA \) là ba dây của đường tròn \((O)\). Từ điểm chính giữa \(M\) của \(\overparen{AB}\) vẽ dây \(MN\) song song với dây \(BC\). Gọi giao điểm của \(MN\) và \(AC\) là \(S\). Chứng minh \(SM = SC\) và \(SN = SA\)

Lời giải chi tiết

Ta có:

+) Chứng minh SM = SC

\(\widehat {{M_1}} = \widehat {{C_2}}\) (2 góc ở vị trí so le trong)

\(\widehat{{{C}_{1}}}=\widehat{{{C}_{2}}}\) (2 góc nội tiếp chắn 2 cung bằng nhau \(\overset\frown{BM}=\overset\frown{AM}\) )

Nên suy ra \(\widehat{{{M}_{1}}}=\widehat{{{C}_{1}}}\)

Suy ra tam giác SMC là tam giác cân tại S. Vậy SM = SC.

+) Chứng minh SA = SN

Ta có: \(\widehat {{M_1}} = \widehat {{A_1}}\)( 2 góc nội tiếp cùng chắn cung NC)

\(\widehat {{C_1}} = \widehat {{N_1}}\)(2 góc nội tiếp cùng chắn cung AM)

Mà \(\widehat{{{M}_{1}}}=\widehat{{{C}_{1}}}\) (chứng minh trên)

\(\widehat{{{A}_{1}}}=\widehat{{{N}_{1}}}\) (vì cùng bằng 2 góc bằng nhau)

Vậy tam giác SAN cân tại S. Nên SA = SN

loigiaihay..com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan