Bài 19 trang 75 SGK Toán 9 tập 2

Bình chọn:
3.9 trên 62 phiếu

Giải bài 19 trang 75 SGK Toán 9 tập 2. Cho một đường tròn tâm O

Đề bài

Cho một đường tròn tâm \(O\), đường kính \(AB\) và \(S\) là một điểm nằm ngoài đường tròn. \(SA\) và \(SB\) lần lượt  cắt đường tròn tại \(M, N\). Gọi \(H\) là giao điểm của \(BM\) và \(AN\). Chứng minh rằng \(SH\) vuông góc với \(AB\).

Lời giải chi tiết

\(BM \bot SA\) (\(\widehat{AMB}\) = \(90^{\circ}\) vì là góc nội tiếp chắn nửa đường tròn).

Tương tự, có: \(AN \bot SB\)

Như vậy \(BM\) và \(AN\) là hai đường cao của tam giác \(SAB\) và \(H\) là trực tâm.

Suy ra \(SH \bot AB\).

(Trong một tam giác ba đường cao đồng quy)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 3. Góc nội tiếp

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu