Đề kiểm tra 45 phút (1 tiết ) - Đề số 4 - Chương 2 - Hình học 8


Giải Đề kiểm tra 45 phút (1 tiết ) - Đề số 4 - Chương 2 - Hình học 8

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tính diện tích hình vuông biết đường chéo là 8 cm.

Bài 2. Trên cạnh DC của hình bình hành ABCD lấy một điểm E. Gọi I là giao điểm của AE và đường chéo BD.

Chứng minh rằng: \({S_{ABE}} - {S_{DIE}} = {S_{BIEC}}.\)

Bài 3. Cho tam giác ABC, trên tia AB lấy điểm D sao cho BD = 3DA. Trên BC lấy điểm E sao cho  \(BE = 4EC.\) Gọi F là giao điểm của AE và CD.

a) Chứng minh FD = FC.

b) Chứng minh \({S_{ABC}} = 2{S_{AFB}}.\)

LG bài 1

Phương pháp giải:

Sử dụng định lý Py-ta-go để tính cạnh hình vuông

Lời giải chi tiết:

Gọi cạnh hình vuông là x, ta có \(\Delta ABC\) vuông cân cạnh x.

\({x^2} + {x^2} = {8^2}\) (định lý Py – ta – go)

\( \Rightarrow 2{x^2} = 64 \Rightarrow {x^2} = 32\) \( \Rightarrow x = \sqrt {32} \left( {cm} \right)\)

Vậy \({S_{ABCD}} = {x^2} = {\left( {\sqrt {32} } \right)^2} = 32\left( {c{m^2}} \right).\)

LG bài 2

Phương pháp giải:

Chỉ ra cặp tam giác có diện tích bằng nhau (hai đáy bằng nhau, hai đường cao tương ứng bằng nhau)

Lời giải chi tiết:

Ta có AB = CD (gt)

\( \Rightarrow {S_{AEB}} = {S_{BDC}}\) (hai đáy bằng nhau, hai đường cao tương ứng bằng nhau)

Mà \({S_{BDC}} - {S_{DIE}} = {S_{BIEC}}\)

Do đó: \({S_{ABE}} - {S_{DIE}} = {S_{BIEC}}.\)

LG bài 3

Phương pháp giải:

Sử dụng:

Đường trung bình của tam giác

Công thức tính diện tích tam giác: \(S = \frac{1}{2}a.h\)

Lời giải chi tiết:

a) Gọi M là trung điểm của AB và N là trung điểm của BE

Vì MA = MB =\(\frac{1}{2}.AB\).

Mà BD = 3.AD nên AD = \(\frac{1}{4}.AB\)

\( \Rightarrow AD = \frac{1}{2}.AM\)

\( \Rightarrow D\) là trung điểm của MA.

Gọi I là trung điểm của NE. Khi đó \(DI// AE.\)

Trong \(\Delta CDI\) có E là trung điểm IC và \(EF//DI\) nên F là trung điểm của CD (đường trung bình của tam giác) hay FD = FC.

b) Ta có: \({S_{AFB}} = {S_{AFD}} + {S_{DFB}}\)

mà \({S_{AFD}} = {1 \over 2}{S_{ADC}}\) (vì F là trung điểm của DC)

và \({S_{DFB}} = {1 \over 2}{S_{BCD}}\) (vì F là trung điểm DC)

\( \Rightarrow {S_{AFD}} + {S_{DFB}} = {1 \over 2}\left( {{S_{ADC}} + {S_{BCD}}} \right)\)

\( \Rightarrow {S_{AFB}} = {1 \over 2}{S_{ABC}}.\)

Do đó: \({S_{ABC}} = 2{S_{AFB}}.\)

Loigiaihay.com 


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí