Đề kiểm tra 45 phút (1 tiết ) - Đề số 3 - Chương 2 - Hình học 8

Bình chọn:
3.7 trên 7 phiếu

Giải Đề kiểm tra 45 phút (1 tiết ) - Đề số 3 - Chương 2 - Hình học 8

Đề bài

Bài 1. Tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, AD. Tính diện tích tứ giác EFGH, biết AC = 8cm và BD = 6cm.

Bài 2. Cho hình bình hành ABCD, vẽ bốn điểm P, Q, R, S của các cạnh CD, AD, AB và BC. Chứng minh tứ giác tạo bởi các đường thẳng này có diện tích bằng \({1 \over 5}\) diện tích hình bình hành ABCD.

Lời giải chi tiết

Bài 1

Ta có EF, HG lần lượt là các đường trung bình của \(\Delta ABC\) và \(\Delta ADC\) nên \({\rm{EF}}//HG//AC\) và EF = HG. Do đó tứ giác EFGH là hình bình hành.

Tương tự \(EH// BD\)mà \(BD \bot AC\left( {gt} \right) \Rightarrow {\rm{EF}} \bot {\rm{EH,}}\) do đó EFGH là hình chữ nhật và \(EF = {1 \over 2}AC = 4(cm),\) \(EH = {1 \over 2}BD = 3cm.\)

Vậy \({S_{EFGH}} = EF.EH = 12\left( {c{m^2}} \right).\)

Bài 2

Nối A với C ta có AP là đường trung tuyến của \(\Delta ACD\) nên

\({S_{ADP}} = {S_{APC}} = {1 \over 2}{S_{ADC}} = {1 \over 4}{S_{ABCD}}\)

Tương tự \({S_{ACR}} = {S_{BCR}} = {1 \over 2}{S_{ABC}} = {1 \over 4}{S_{ABCD}}.\)

\( \Rightarrow {S_{APC}} + {S_{ACR}} = {S_{{\rm{AR}}CP}} = {1 \over 2}{S_{ABCD}}.\)

\({S_{ADP}} = {S_{APC}} = {1 \over 2}{S_{ADC}} = {1 \over 4}{S_{ABCD}}\)

Tương tự \({S_{ACR}} = {S_{BCR}} = {1 \over 2}{S_{ABC}} = {1 \over 4}{S_{ABCD}}.\)

\( \Rightarrow {S_{APC}} + {S_{ACR}} = {S_{{\rm{AR}}CP}} = {1 \over 2}{S_{ABCD}}.\)

Gọi H là giao điểm của AP và BQ, K là giao điểm của CR và BQ, M là giao điểm của AP và DS, N là giao điểm của CR và DS. 

Dễ thấy HKNM là hình bình hành nên các tam giác sau đây có cùng diện tích:

\({S_{AKH}} = {S_{HKM}} = {S_{MNH}} = {S_{MNC}} \)\(\,= {S_{AKB}} = {S_{MCD}}\)

Mà \({S_{AKR}} = {1 \over 2}{S_{AKB}}\) (đáy gấp đôi, chung đường cao)

Tương tự \({S_{MPC}} = {1 \over 2}{S_{MCD}}\)

\( \Rightarrow {S_{AKH}} = {S_{HKM}} = {S_{MNH}} \)\(\,= {S_{MNC}} = \left( {{S_{AKR}} + {S_{MPC}}} \right) \)\(\,= {1 \over 5}{S_{ARCP}}.\)

Mà \({S_{ARCP}} = {1 \over 2}{S_{ABCD}}\)

\( \Rightarrow {S_{HKM}} + {S_{MKN}} = {1 \over 5}{S_{ABCD}}\) hay \({S_{KHMN}} = {1 \over 5}{S_{ABCD}}.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 8

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com